簡易檢索 / 詳目顯示

研究生: 向近賢
Hsiang, Chin-Hsien
論文名稱: 穩健可靠之電動車電池系統設計關鍵要素與策略
Factors and Strategies for Designing a Robust and Reliable Battery System for Electric Vehicles
指導教授: 呂有豐
Lue, Yeou-Feng
口試委員: 呂有豐
Lue, Yeou-Feng
羅乃維
Lo, Nai-Wei
何秀青
Ho, Mei H.C.
口試日期: 2024/07/08
學位類別: 碩士
Master
系所名稱: 工業教育學系科技應用管理碩士在職專班
Department of Industrial Education_Continuing Education Master's Program of Technological Management
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 80
中文關鍵詞: 動力電池電池安全電動車電池系統決策實驗研究室基於決策實驗研究室之網路流程分析法多準則折衷排序法
英文關鍵詞: Power battery, Battery safety, Electric vehicle, Battery system, DEMATEL, DANP, VIKOR
研究方法: 調查研究
DOI URL: http://doi.org/10.6345/NTNU202401698
論文種類: 學術論文
相關次數: 點閱:89下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 動力電池是電動車的主要能量儲存元件,也是防範電動車火災的關鍵分析對象。雖然電動車火災的發生機率比燃油車低,但一旦發生火災,其火勢發展速度快、燃燒或爆炸猛烈且難以撲滅,使其危害程度比燃油車更為嚴重。
    動力電池系統對於電動車的性能、行駛距離和可持續性至關重要。過去的研究通常集中在電芯材料、電芯性能和能量儲存容量,往往忽略了電芯、電池管理系統與週邊系統之間的相互關係。本研究導入決策實驗研究室和基於決策實驗研究室之網路流程分析法,推衍了電芯、電池管理系統及其他輔助系統之間的影響關係和權重。並導入多準則折衷排序法對電動車動力電池於充電、停車與行駛情境下,造成不良反應的關鍵要素及改善對策進行研究。
    研究發現,電芯電解質為影響電動車動力電池之最關鍵要素,改善電解質可以作為解決動力電池在過度充放電產生過熱或加速老化等不良反應的最佳方案。平衡電芯之串聯電壓與改變電量評估方式,則可作為備選的最佳方案。
    本文旨在通過決策分析,確定電動車動力電池系統對於電動車安全和性能影響的關鍵要素。包括維持電芯健康狀況和調整電解液之化學成份,如加入稳定劑、阻燃劑,為改善電池性能和保持電動車動力電池高容量、高放電倍率特性的關鍵。本研究的結果對於設計和開發穩健可靠的電動車動力電池系統具有重要意義,可作為未來設計電動車動力電池之依據。

    The power battery is the primary energy storage component for electric vehicles and a crucial subject of analysis for preventing electric vehicle fires. Although the probability of electric vehicle fires is lower than that of fuel-powered vehicles, once a fire occurs, it develops rapidly, burns or explodes intensely, and is difficult to extinguish, making the potential harm more severe compared to conventional vehicles.
    The power battery system is essential for the performance, driving range, and sustainability of electric vehicles. Previous research has typically focused on battery cell materials, cell performance, and energy storage capacity while overlooking the relationships between battery cells, the Battery Management System (BMS), and surrounding systems. This study employs the Decision-Making Trial and Evaluation Laboratory (DEMATEL) and the Decision-Making Trial and Evaluation Laboratory-based Analytic Network Process (DANP) methods to analyze the influence relationships and weights between battery cells, BMS, and other auxiliary systems. Additionally, the Vlsekriterijumska Optimizacija i Kompromisno Resenje (VIKOR) method is used for multi-criteria decision analysis to rank adverse reactions and improvement strategies for power batteries in charging, parking, and driving scenarios.
    Research has found that the electrolyte in battery cells is the most critical factor affecting the performance of electric vehicle power batteries. Improving the electrolyte can be the best solution to address adverse reactions like overheating or accelerated aging due to overcharging or discharging. Balancing the series voltage of the cells and changing the way of evaluating battery charge can be considered as alternative optimal solutions.
    The aim of this thesis is to identify the key factors influencing the safety and performance of electric vehicle power battery systems through decision analysis. Maintaining battery cell health and adjusting the electrolyte, such as by adding stabilizers or flame retardants, which are crucial for improving battery performance and preserving the high capacity and high discharge rate characteristics of electric vehicle power batteries. The findings of this study are significant for designing and developing robust and reliable power battery systems for electric vehicles, ensuring their safety and reliability, and providing valuable reference points for future research.

    Chapter 1 Introduction 1 1.1 Research Background 2 1.2 Research Motivations 5 1.3 Research Objectives 7 1.4 Research Framework 8 1.5 Research Process 8 1.6 Research Limitations 9 1.7 Thesis Structure 9 Chapter 2 Literature Review 11 2.1 Worldwide Battery Demand 11 2.2 Battery Cell 14 2.3 Battery System 17 2.4 Battery Safety 18 2.5 Solutions to Improve Battery Security 23 Chapter 3 Research Methods 27 3.1 DEMATEL Method 28 3.2 DANP Method 30 3.3 Modified VIKOR 32 Chapter 4 Empirical Study 35 4.1 Design of Questionnaires 38 4.2 Derivation of Influence Relationships 40 4.3 Derivation of Improvement Solutions 52 Chapter 5 Discussion 57 5.1 Risk Factors of Batteries 57 5.2 Solution for Improving Security of Power Batteries for Electric Vehicles 60 5.3 Power Battery Safety of Electric Vehicle 64 Chapter 6 Conclusions 67 References 71 Appendix 77

    Ahamad, S., Gowda, R. R., & Sundaramaan, K. V. (2023). Experimental Investigation of Thermal Runaway of Single 21700 Li-Ion Cell and Runaway Propagation in a Battery Module. Pennington, N.J.: The Electrochemical Society.
    Andrea, D. (2010). Battery Management Systems for Large Lithium-ion Battery Packs. Norwood, M.A.: Artech House.
    Arora, S., Shen, W., & Kapoor, A. (2016). Review of mechanical design and strategic placement technique of a robust battery pack for electric vehicles. Renewable and Sustainable Energy Reviews, 60, 1319-1331.
    Beauregard, G. P., & Phoenix, A. (2008). Report of investigation: Hybrids plus plug in hybrid electric vehicle (Vol. 5903). Idaho Falls, I.D.: US Department of Energy, Idaho National Laboratory.
    Bin Ahmad, M. S., Pesyridis, A., Sphicas, P., Mahmoudzadeh Andwari, A., Gharehghani, A., & Vaglieco, B. M. (2022). Electric vehicle modelling for future technology and market penetration analysis. Frontiers in Mechanical Engineering, 8, 896547.
    Chen, S., Gao, Z., & Sun, T. (2021). Safety challenges and safety measures of Li‐ion batteries. Energy Science & Engineering, 9(9), 1647-1672.
    Chen, Y., Kang, Y., Zhao, Y., Wang, L., Liu, J., Li, Y., . . . Tavajohi, N. (2021). A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. Journal of Energy Chemistry, 59, 83-99.
    Chen, Z. X., Zhao, M., Hou, L. P., Zhang, X. Q., Li, B. Q., & Huang, J. Q. (2022). Toward practical high‐energy‐density lithium–sulfur pouch cells: a review. Advanced Materials, 34(35), 2201555.
    Denton, T. (2020). Electric and hybrid vehicles. Oxford, U.K.: Routledge.
    Doughty, D. H. (2012). Vehicle Battery Safety Roadmap Guidance. Golden, C.O.: National Renewable Energy Lab.
    Feng, X., Ren, D., He, X., & Ouyang, M. (2020). Mitigating thermal runaway of lithium-ion batteries. Joule, 4(4), 743-770.
    Gabus, A., & Fontela, E. (1972). World problems, an invitation to further thought within the framework of DEMATEL. Battelle Geneva Research Center, Geneva, Switzerland, 1(8), 12-14.
    Gao, F., Yang, K., & Li, D. (2015). Evaluation of combustibility of lithium ion battery components and dangers they involve. China Safety Science Journal, 25, 62-67.
    García, A., Monsalve-Serrano, J., Martinez-Boggio, S., & Golke, D. (2023). Energy assessment of the ageing phenomenon in Li-Ion batteries and its impact on the vehicle range efficiency. Energy Conversion and Management, 276, 116530.
    Huang, C.-Y., Chung, P.-H., Shyu, J. Z., Ho, Y.-H., Wu, C.-H., Lee, M.-C., & Wu, M.-J. (2018). Evaluation and selection of materials for particulate matter MEMS sensors by using hybrid MCDM methods. Sustainability, 10(10), 3451.
    Huang, C.-Y., Wang, L.-C., Kuo, Y.-T., & Huang, W.-T. (2021). A novel analytic framework of technology mining using the main path analysis and the decision-making trial and evaluation laboratory-based analytic network process. Mathematics, 9(19), 2448.
    Hwang, B.-N., Huang, C.-Y., & Wu, C.-H. (2016). A TOE approach to establish a green supply chain adoption decision model in the semiconductor industry. Sustainability, 8(2), 168.
    Hwang, B.-N., Huang, C.-Y., & Yang, C.-L. (2016). Determinants and their causal relationships affecting the adoption of cloud computing in science and technology institutions. Innovation, 18(2), 164-190.
    Hwang, C. L., & Yoon, K. (1981). Multiple Attribute Decision Making: Methods and Applications. New York, N.Y.: Springer-Verlag.
    International Energy Agency. (2023). Global EV Outlook 2023. Retrieved from https://www.iea.org/reports/global-ev-outlook-2023
    International Organization for Standardization. (2019). Electrically Propelled Road Vehicles (ISO/TR 8713:2019). Geneva, Switzerland: International Organization for Standardization.
    Jeevarajan, J. A., Joshi, T., Parhizi, M., Rauhala, T., & Juarez-Robles, D. (2022). Battery Hazards for Large Energy Storage Systems. Washington, D.C.: ACS Publications.
    Jiang, L., Zhang, Y., Li, T., Diao, X., & Zhang, J. (2020). Analysis on charging safety and optimization of electric vehicles. Paper presented at the IEEE 6th International Conference on Computer and Communications (ICCC), Chengdu, China.
    Kang, S., Kwon, M., Choi, J. Y., & Choi, S. (2023). Full-scale fire testing of battery electric vehicles. Applied Energy, 332, 120497.
    Kharabati, S., & Saedodin, S. (2024). A systematic review of thermal management techniques for electric vehicle batteries. Journal of Energy Storage, 75, 109586.
    Kumar, R. R., Bharatiraja, C., Udhayakumar, K., Devakirubakaran, S., Sekar, S., & Mihet-Popa, L. (2023). Advances in batteries, battery modeling, battery management system, battery thermal management, SOC, SOH, and charge/discharge characteristics in EV applications. IEEE Access, 11, 105761-105809.
    Löbberding, H., Wessel, S., Offermanns, C., Kehrer, M., Rother, J., Heimes, H., & Kampker, A. (2020). From cell to battery system in BEVs: Analysis of system packing efficiency and cell types. World Electric Vehicle Journal, 11(4), 77.
    Lin, P.-J., Shiue, Y.-C., Tzeng, G.-H., & Huang, S.-L. (2019). Developing a sustainable long-term ageing health care system using the DANP-mV model: Empirical case of Taiwan. International Journal of Environmental Research and Public Health, 16(8), 1349.
    Link, S., Neef, C., & Wicke, T. (2023). Trends in automotive battery cell design: A statistical analysis of empirical data. Batteries, 9(5), 261.
    Liu, W., Placke, T., & Chau, K. (2022). Overview of batteries and battery management for electric vehicles. Energy Reports, 8, 4058-4084.
    Nagourney, T., Jordan, J., Marsh, L., Scardino, D., & May, B. M. (2021). The implications of post-fire physical features of cylindrical 18650 lithium-ion battery cells. Fire Technology, 57(4), 1707-1722.
    Naqvi, S. S. A., Jamil, H., Iqbal, N., Khan, S., Khan, M. A., Qayyum, F., & Kim, D.-H. (2024). Evolving electric mobility: in-depth analysis of integrated electronic control unit development in electric vehicles. IEEE Access, 12, 15957-15983.
    Opricovic, S., & Tzeng, G.-H. (2003). Fuzzy multicriteria model for postearthquake land-use planning. Natural Hazards Review, 4(2), 59-64.
    Ou Yang, Y.-P., Shieh, H.-M., Leu, J.-D., & Tzeng, G.-H. A novel hybrid MCDM model combined with DEMATEL and ANP with applications. International Journal of Operations Research, 5(3), 160-168.
    Pegel, H., Wycisk, D., & Sauer, D. U. (2023). Influence of cell dimensions and housing material on the energy density and fast-charging performance of tabless cylindrical lithium-ion cells. Energy Storage Materials, 60, 102796.
    Perumal, S. S., Lusby, R. M., & Larsen, J. (2022). Electric bus planning & scheduling: A review of related problems and methodologies. European Journal of Operational Research, 301(2), 395-413.
    Poornesh, K., Nivya, K. P., & Sireesha, K. (2020). A comparative study on electric vehicle and internal combustion engine vehicles. Paper presented at the 2020 International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India.
    Popp, H., Zhang, N., Jahn, M., Arrinda, M., Ritz, S., Faber, M., . . . Cendoya, I. (2020). Ante-mortem analysis, electrical, thermal, and ageing testing of state-of-the-art cylindrical lithium-ion cells. Elektrotech. Informationstechnik, 137(4), 169-176.
    S. Rangarajan, S., Sunddararaj, S. P., Sudhakar, A., Shiva, C. K., Subramaniam, U., Collins, E. R., & Senjyu, T. (2022). Lithium-ion batteries—The crux of electric vehicles with opportunities and challenges. Clean Technologies, 4(4), 908-930.
    Sen, A., & Miller, J. (2022). Emissions reduction benefits of a faster, global transition to zero-emission vehicles. Washington, D.C.: ICCT.
    Sun, P., Bisschop, R., Niu, H., & Huang, X. (2020). A review of battery fires in electric vehicles. Fire Technology, 56, 1361-1410.
    Sun, T., Wang, L., Ren, D., Shi, Z., Chen, J., Zheng, Y., . . . Wang, L. (2023). Thermal runaway characteristics and modeling of LiFePO4 power battery for electric vehicles. Automotive Innovation, 6(3), 414-424.
    Urquizo, J., & Singh, P. (2023). A review of health estimation methods for Lithium-ion batteries in Electric Vehicles and their relevance for Battery Energy Storage Systems. Journal of Energy Storage, 73, 109194.
    Waseem, M., Ahmad, M., Parveen, A., & Suhaib, M. (2023). Battery technologies and functionality of battery management system for EVs: Current status, key challenges, and future prospectives. Journal of Power Sources, 580, 233349.
    Yang, X.-G., Liu, T., & Wang, C.-Y. (2021). Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles. Nature Energy, 6(2), 176-185.
    Yazdi, M., Khan, F., Abbassi, R., & Rusli, R. (2020). Improved DEMATEL methodology for effective safety management decision-making. Safety Science, 127, 104705.
    Yu, P.-L. (1973). A class of solutions for group decision problems. Management Science, 19(8), 936-946.
    Zhang, J., Zhang, L., Sun, F., & Wang, Z. (2018). An overview on thermal safety issues of lithium-ion batteries for electric vehicle application. IEEE Access, 6, 23848-23863.
    Zhou, Z., Zhou, X., Wang, B., Liew, K., & Yang, L. (2022). Experimentally exploring thermal runaway propagation and prevention in the prismatic lithium-ion battery with different connections. Process Safety and Environmental Protection, 164, 517-527.

    無法下載圖示 電子全文延後公開
    2029/08/14
    QR CODE