簡易檢索 / 詳目顯示

研究生: 李宗恆
Chung-Heng LEE
論文名稱: 以加速度訊號輔助速度估測之性能評估
Performance Assessment of an Acceleration Signal-Assisted Velocity Estimator
指導教授: 呂有勝
Lu, Yu-Sheng
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 70
中文關鍵詞: 加速規加速度訊號速度估測器
英文關鍵詞: Accelerometer, Acceleration signal, Velocity observer
論文種類: 學術論文
相關次數: 點閱:320下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 舉凡現今工業界常使用之控制機具與製程所需之機台等等,皆會應用到控制技巧。然而許多控制法則必須得知受控體之速度,所以如何獲得一個品質佳且精準的速度訊號是一個重要的課題。本論文對速度估測進行細部分析探討,提出動態補償速度估測器(Dynamically Compensated Velocity Observer, DCVO),並與多種速度估測器做比較。DCVO乃利用加速度訊號搭配動態補償器,以估測速度;由理論證實,其不但不會受到位置直流偏移量影響,而且對於常見的加速度訊號之直流偏移量不敏感。實驗設備使用精密線型平台系統進行速度估測及定位控制,採用美國德州儀器公司(Texas Instruments, TI) 所生產之TMS320C6713 DSP搭配具FPGA之擴充子板為實驗平台。
    在開迴路速度估測實驗中,由實驗結果可知本文所提出之DCVO較其他估測法有良好的結果,且不會因加速規直流偏壓影響其估測值。而在定位控制方面,使用積分型可變結構控制(Integral Variable Structure Control, IVSC),並分別由ITM及DCVO兩種速度估測器估測出速度回授於控制器中,由實驗結果可得知本文所提出之DCVO 能有較佳的定位精度。此外,利用加速規量測得之訊號,搭配系統狀態方程式,求得系統干擾量並加以補償,能大幅降低干擾對系統之影響。

    This paper presents a velocity observer, in which the acceleration signal is employed to assist the velocity estimation. In order to obtain accurate velocity information, a Dynamically Compensated Velocity Observer (DCVO) is designed and introduced. To show the effectiveness of the DCVO, it is experimentally compared with other velocity observation approaches. The DCVO is consisted of a dynamic compensator and a velocity observer. It is proven that the DCVO is not affected by the position ACC offset, and also not sensitive to the acceleration ACC offset.
    The experimental system consists of a commercially available single-axis linear stage, a brushless servo motor and a DSP/FPGA system used as the control kernel. We use C language and very-high-speed hardware description language (VHDL) as developing tools for the servo control system.
    Experimental results confirm the effectiveness of the DCVO. The Integral Variable Structure Control (IVSC) is used in positioning control with disturbance observer compensation, while the velocity signal is estimated through DCVO and ITM and compared. Experimental results show the DCVO estimated velocity leads to better positioning precision and sensitivity while used in IVSC.

    摘 要 I ABSTRACT II 致謝 III 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 論文架構 4 第二章 實驗系統介紹與系統鑑別 5 2.1 系統架構簡介 5 2.2系統硬體架構 7 2.2.1 訊號處理架構[20] 7 2.2.2 系統之位置與速度回授[20] 7 2.3 線性平台系統鑑別[21] 9 第三章 傳統速度估測器與以加速度訊號輔助之速度估測器 12 3.1 傳統速度估測器架構與實現[19] 12 3.2 加速度訊號輔助之速度估測器架構與實現 16 3.2.1 Tracking Differentiator (TD) 16 3.2.2 Super-Twisting Algorithm (STA) 17 3.2.3 狀態空間速度估測器 (State-Space Velocity Observer, SSVO) 18 3.2.4 動態補償速度估測器 (Dynamically Compensated Velocity Observer, DCVO) 20 3.3 DCVO與SSVO參數比較與分析 22 3.4弦波命令下之各種速度估測器性能比較與實驗 25 3.4.1 ITM與FDM之速度估測比較實驗 25 3.4.2 TD之速度估測比較實驗 28 3.4.3 STA之速度估測比較實驗 33 3.4.4 TD、STA、SSVO與DCVO在加速規產生偏移量時之估測效能實驗 44 3.5 TD、STA、SSVO與DCVO在解析度較小時之效能比較實驗 47 3.6 所有速度估測器之低速及高速估測比較實驗 52 第四章 速度估測器估測結果應用於積分型可變結構控制器之性能評估 55 4.1 積分型可變結構(Integral Variable Structure Control, IVSC)控制器設計 55 4.2 利用ITM速度估測法之IVSC定位控制結果 57 4.3 利用DCVO速度估測法之IVSC定位控制結果 60 4.4 使用高性能加速規之干擾估測器(ADOB)設計 64 4.5 利用DCVO速度估測法且加入ADOB補償之IVSC定位控制結果 65 第五章 結論 68 參考文獻 69

    [1] O. Wallmark, L. Harnefors, and O. Carlson, “An improved speed and position estimator for salient permanent-magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 255-262, 2005.
    [2] F. Jatta, G. Legnani, and A. Visioli, “Friction compensation in hybrid force/velocity control of industrial manipulators,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 604-613, 2006.
    [3] S. Katsura, Y. Matsumoto, and K. Ohnishi, “Analysis and experimental validation of force bandwidth for force control,” IEEE Trans. Ind. Electron., vol. 53, no. 3, pp. 922-928, Jun. 2006.
    [4] K. Khayati, P. Bigras, and L. A. Dessaint, “A multistage position/force control for constrained robotic systems with friction: Joint-space decomposition, linearization, and multiobjective observer/controller synthesis using LMI formalism,” IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1698-1712, 2006.
    [5] J. Kofman, X. Wu, T. J. Luu, and S. Verma, “Teleoperation of a robot manipulator using a vision-based human–robot interface,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1206-1219, 2005.
    [6] S. Jeon, M. Tomizuka, “Benefits of acceleration measurement in velocity estimation and motion control,” Control Engineering Practice, vol. 15, no. 3, pp. 325-332, 2007.
    [7] F.C. Lin and S.M. Yang, “Adaptive fuzzy logic-based velocity observer for servo motor drives,” Mechatronics, vol.13, pp. 229-241, 2003.
    [8] T.J. Kweon and D.S. Hyun, “High-performance speed control of electric machine using low-precision shaft encoder,” IEEE Trans. Power Electron, vol.14, no.5, pp. 838-849, 1999.
    [9] N.J. Kim, H.S. Moon, and D.S. Hyun, “Inertia identification for the speed observer of the low speed control of induction machines,” IEEE Trans. Ind. Appl., vol.32, no.6, pp. 1371-1379, 1996.
    [10] S. Ibrir, “Linear time-derivative trackers,” Automatica, vol.40, pp. 397-405, 2004.
    [11] A. Gees, Accelerometer-Enhanced Speed Estimation for Linear-Drive Machine Tool Axes, Ph.D. dissertation, Lausanne, Switzerland, 1996.
    [12] S.M. Yang and S.J. Ke, “Performance evaluation of a velocity observer for accurate velocity estimation of servo motor drives,” IEEE Trans. Ind. Appl., vol.36, no.1, pp. 98-104, 2000.
    [13]J.S. Farrokh, H. Vincent, and C.S.J. Chen, “Discrete-time adaptive windowing for velocity estimation,” IEEE Trans. Contr. Syst. Technol., vol.8, no.6, pp. 1003-1009, 2000.
    [14] J. Q. Han, “From PID to active disturbance rejection control,” IEEE Trans. Ind. Electron., vol. 56, no. 3, pp. 900-906, 2009.
    [15]H. Saadaoui, J. D. Leon, M. Djemai, N. Manamanni, J. R. Barbot, “High order sliding mode and adaptive observers for a class of switched systems with unknown parameter: A comparative study,” in Proceedings of the 45th IEEE Conference on Decision & Control, 2006, pp. 5555-5560.
    [16] Levant A., “Robust exact differentiation via sliding mode technique”, Automatica, vol. 34, no. 3, pp. 379–384.
    [17] S. Merhav, Aerospace Sensor Systems and Application. Springer-Verlag, NY, 1996.
    [18] J.C. Zheng, M.Y. Fu, “A Reset state estimator using an accelerometer for enhanced motion control with sensor quantization,” IEEE Trans. Contr. Syst. Technol., vol. 18, Issue 1, pp. 79-90, 2010.
    [19] 王炫文,高性能加速規之研製與無刷伺服系統之速度估測與干擾補償,碩士論文,國立雲林科技大學機械工程系,雲林、台灣,2007。
    [20] 劉聖濠,積分控制之初始值補償策略實作,碩士論文,國立雲林科技大學機械工程系,雲林、台灣,2008。
    [21] 游世杰,以內部模型原理為基礎之控制器初始值補償及其於精密線性平台之應用,碩士論文,國立台灣師範大學機電科技學系,台北,台灣,2010。

    下載圖示
    QR CODE