研究生: |
郭家瑋 Guo, Jia-Wei |
---|---|
論文名稱: |
連結物聯網及雲端運算之智慧型結露偵測系統開發 Development of a smart condensation detection system linking the Internet of Things and cloud computing |
指導教授: |
呂家榮
Lu, Chia-Jung |
口試委員: |
周芳妃
Chou, Fang-Fei 宋蕙伶 Sung, Hui-Ling 呂家榮 Lu, Chia-Jung |
口試日期: | 2021/05/26 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 44 |
中文關鍵詞: | 濕度感測器 、結露偵測器 、物聯網 、雲端運算 、環境控制 |
英文關鍵詞: | Humidity sensor, Dewing detector, IOT, Cloud computing, Environmental control |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202400991 |
論文種類: | 學術論文 |
相關次數: | 點閱:116 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文目的在建構一套雲端智慧型結露預警系統,透過Arduino電路板及其程式,安裝溫度及濕度感測器,用以擷取環境中的溫度變化及濕度變化,計算露點溫度並比對鋼板之表面溫度,配合實驗室自製的環境模擬裝置,模擬工廠的實際環境及溫濕度參數。本論文也透過結合雲端智能及物聯網系統,進行環境中溫度、濕度檢測,分析該環境下結露現象的發生風險,並發送預警訊息,用以減少鋼捲存放時因結露現象造成的經濟損失以及傳統預防結露現象時所需消耗的人力物力。
本論文實際將此套雲端智慧型結露預警系統,應用於南部某鋼鐵公司的鋼捲存放區,並於本系統啟動後,成功偵測到結露現象的發生,也確實透過網路發出警示訊息給遠端的作業主管,避免因結露現象所造成的經濟損失。
本論文透過此套雲端智慧型結露預警系統,分析結露現象發生時之數據,並建立一套理論模型,用於評估結露現象發生之風險。依照不同的溫濕度參數,即時給予警示訊息,透過多點同時偵測的特性,減少因感測器所造成的誤差,提高此系統的準確性與實用性。
本論文也致力於開發新型的結露檢測裝置及系統,相較於先前版本的裝置,新一型的結露偵測器,由於其所使用的程式與硬體皆較舊型裝置高階,在靈敏度上有顯著提升,在評估結露現象的風險上有較高的準確性,因此本篇研究也針對新舊兩種不同結露偵測器之裝置與程式,進行再現性測試與結露現象風險分析。
The purpose of this paper is to construct a cloud-based intelligent dewing warning system. Through the Arduino circuit board and its program, temperature and humidity sensors are installed to capture the temperature and humidity changes in the environment, calculate the dew point temperature and compare the steel plate. The surface temperature is matched with the laboratory's self-made environmental simulation device to simulate the factory's actual environment and temperature and humidity parameters. This paper also combines cloud intelligence and IoT systems to detect temperature and humidity in the environment, analyzes the risk of dewing in the environment, and sends early warning messages to reduce the economic loss caused by dewing when steel coils are stored. The traditional manpower and material resources are needed to prevent dewing.
This paper may be applied this cloud-based intelligent dewing early warning system to the steel coil storage area of a steel company in the south. After the system was activated, it successfully detected dewing and sent a warning message through the Internet. The remote operation supervisor avoids economic losses caused by dewing.
This paper uses this cloud-based intelligent dewing early warning system to analyze the data when condensation occurs, and establish a theoretical model to evaluate the risk of dewing. According to different temperature and humidity parameters, real-time warning messages are given. Through the feature of multi-point simultaneous detection, the error caused by the sensor is reduced, and the accuracy and practicability of the system are improved.
This paper is also devoted to the development of a new type of dewing detection device and system. Compared with the previous version of the device, the new type of dewing detector, because the program and hardware used are higher than the old device, in terms of sensitivity It has been significantly improved and has higher accuracy in assessing the risk of dewing. Therefore, this research also conducts reproducibility tests and analyses of dewing risks for the new and old devices and programs of the two different dewing detectors.
[1] Postolache, O., Girao, P. M. B. S., Pereira, J. M. D., & Ramos, H. G. (2006). Dew Point and Relative-Humidity Smart Measuring System. IEEE Transactions on Instrumentation and Measurement, 55(6), 2259-2264.
[2] Rittersma, Z. M. (2002). Recent achievements in miniaturised humidity sensors—a review of transduction techniques. Sensors and Actuators A: Physical, 96(2), 196-210. https://doi.org/https://doi.org/10.1016/S0924-4247(01)00788-9
[3] 電容式溼度感測器的使用與探究。(2010) 黃信智、郭盈顯。檢https://webcache.googleusercontent.com/search?q=cache:VC4GJ2Mt08IJ:https://www.shs.edu.tw/works/essay/2010/11/2010111418055328.pdf+&cd=2&hl=zh-TW&ct=clnk&gl=tw (May. 01, 2021)
[4] G.S. Wilson, R. Gifford, Review Biosensors for real-time in vivo measurements, Biosens. Bioelectron. 20 (2005) 2388-2403.
[5] L. Su, W. Jia, C. Hou, Y. Lei, Microbial biosensors: A review, Biosens. Bioelectron. 26 (2011) 1788-1799.
[6] Z. Li, H. Zhang, W. Zheng, W. Wang, H. Huang, C. Wang, A. G. Macdiarmidand Y. Wei, "Highly Sensitive and Stable Humidity Nanosensors Based onLiCl Doped TiO2 Electrospun Nanofibers," Journal of the American Chemical Society, vol. 130, pp. 5036-5037, 2008.
[7] Y.-C. Hu, C.-L. Dai and C.-C. Hsu, "Titanium Dioxide Nanoparticle HumidityMicrosensors Integrated with Circuitry on-a-Chip," Sensors, vol. 14, pp.4177-4188, 2014.
[8] J. Fraden, Humidity and Moisture Sensors, Springer New York, 2004, pp.393-405.
[9] 鍾秉均(2014)。開發間苯二酚─甲醛氣凝膠之CMOS-MEMS電容式溼度感測器。國立清華大學動力機械工程學系碩士論文,新竹市。取自https://hdl.handle.net/11296/4rju5g
[10] A. Santos, T. Kumeria and D. Losic, "Nanoporous anodic aluminum oxide for chemical sensing and biosensors," TrAC Trends in Analytical Chemistry, vol.44, pp. 25-38, 3// 2013.
[11] R. Buchhold, A. Nakladal, G. Gerlach and P. Neumann, "Design studies on piezoresistive humidity sensors," Sensors and Actuators B: Chemical, vol. 53,pp. 1-7, 1998.
[12] 微感測器原理與應用技術。楊啟榮教授授課講義。檢自http://mems.mt.ntnu.edu.tw/document/class/100%E4%B8%8B%E5%AD%B8%E6%9C%9F/100%E5%BE%AE%E6%84%9F%E6%B8%AC%E5%99%A8%E5%8E%9F%E7%90%86%E8%88%87%E6%87%89%E7%94%A8.pdf (May. 03, 2021)
[13] 孫駿榮、吳明展、盧聰勇. Arduino一試就上手. (2010)
[14] IoT Analytics - ThingSpeak Internet of Things., https://thingspeak.com/pages/learn_more.
[15] 維基百科LabVIEW。檢自https://zh.wikipedia.org/wiki/LabVIEW (May. 05, 2021)
[16] 臺灣物聯科技。檢自https://www.taiwaniot.com.tw/product/wemos-d1-r2-v2-1-%e9%96%8b%e7%99%bc%e6%9d%bf-%e5%9f%ba%e6%96%bcesp8266-wemos-electronics-%e5%8e%9f%e5%bb%a0%e5%87%ba%e8%b2%a8-%e9%9d%9e%e5%b8%82%e9%9d%a2%e6%b5%81%e9%80%9a%e5%89%af%e5%bb%a0/ (May. 05, 2021)
[17] Botsheet.com WeMos D1 R2 WiFi UNO開發板。檢自https://www.botsheet.com/cht/shop/wemos-d1-r2/ (May. 05, 2021)
[18] Dew Label .,http://jetec.com.tw/pdf/1/english/D-1_E_data.pdf
[19] Kandrsmith.org. (2018) Wide range of Hygrometers:DHT22, AM2302, AM2320, AM2321, SHT71, HTU21D, Si7021, BME280. Retrieved fromhttp://www.kandrsmith.org/RJS/Misc/Hygrometers/calib_many.html (May. 10, 2021)
[20] Randomnerdtutorials.com. (2019) DHT11 vs DHT22 vs LM35 vs DS18B20 vs BME280 vs BMP180. Retrieved from
https://randomnerdtutorials.com/dht11-vs-dht22-vs-lm35-vs-ds18b20-vs-bme280-vs-bmp180/ (May. 10, 2021)
[21] Kandrsmith.org. (2017) Compare DHT22, DHT11 and Sensirion SHT71. Retrieved from http://www.kandrsmith.org/RJS/Misc/Hygrometers/calib_dht22_dht11_sht71.html (May. 11, 2021)
[22] Arduinomodules. (2020) KY-015 TEMPERATURE AND HUMIDITY SENSOR MODULE. Retrieved from https://arduinomodules.info/ky-015-temperature-humidity-sensor-module/
[23] Github.com (2020) DHT22 - AM2302/AM2303 temperature and humidity sensor library for Arduino. Retrieved from https://github.com/Erriez/ErriezDHT22