研究生: |
郭芳雨 Kuo, Fang-Yu |
---|---|
論文名稱: |
基於認知神經科學之程式理解輔助平台設計與發展 The Design and Development of Visualization and Simulation Tools for Assisting Program Comprehension Based on Cognitive Neuroscience |
指導教授: |
林育慈
Lin, Yu-Tzu |
口試委員: |
林育慈
Lin, Yu-Tzu 陳志洪 Chen, Zhi-Hong 張凌倩 Chang, Ling-Chian |
口試日期: | 2021/10/27 |
學位類別: |
碩士 Master |
系所名稱: |
資訊教育研究所 Graduate Institute of Information and Computer Education |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | 程式理解 、工作記憶 、視覺化輔助 |
英文關鍵詞: | Program comprehension, Working memory, Visuospatial Sketchpad, Phonological Loop, Central Executive, Visualization, Simulation |
研究方法: | 實驗設計法 、 半結構式訪談法 |
DOI URL: | http://doi.org/10.6345/NTNU202201552 |
論文種類: | 學術論文 |
相關次數: | 點閱:84 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在資訊科技時代,程式設計是一項不可或缺的能力,而程式理解是程式設計中必備的程序。然而,程式理解表現可能受到程式理解策略(包含:自上而下(Top-down )的影響,而理解的策略則受工作記憶(包含:視覺空間畫板、語音迴路及中央執行功能)能力的影響。為了彌補工作記憶能力不足的學習者無法使用有效的策略理解程式的缺點,本研究設計一程式理解輔助平台,藉由平台中的模擬提示、流程提示、架構提示及程式解釋四項輔助功能,協助學習者在工作記憶中視覺空間畫板、語音迴路及中央執行功能三個子系統的運作,以使其能運用有效的程式理解策略,進而提升學習者的程式理解表現。為了探究所設計之程式理解輔助平台的效益,本研究透過實證研究,以38位大學以上並有一年以上Python程式設計學習經驗的學生為受試者進行實驗,實驗過程中使用眼動儀來收取受試者的眼動資訊以分析其程式理解策略,並比較不同工作記憶能力與程式理解表現的受試者在有、無程式理解輔助平台的輔助情況下,其程式理解策略與表現的差異。實驗結果發現:無論是高、低工作記憶能力的受試者,在有輔助平台的幫助下程式理解表現皆高於無輔助平台輔助的受試者。此外,無論是高、低工作記憶能力的受試者,在有輔助平台的幫助下都傾向於使用自上而下的程式理解策略。亦即,透過本研究所發展的程式理解輔助平台,可幫助受試者工作記憶的運作,進而使用較有效的自上而下程式理解策略,因此能有較佳的程式解表現。
Programming is a required ability in the IT era, and program comprehension is especially an influential factor in one's performance in programming. Existing research has found possible relationship between program comprehension strategies and working memory capacities, including Visuospatial Sketchpad, Phonological Loop, and Central Executive. To help develop students’ program comprehension strategies, and then improve their program comprehension performance, this research designs and develops visualization and simulation tools for assisting program comprehension as a complement to the weakness of subjects in their Visuospatial Sketchpad, Phonological Loop, and Central Executive within working memories. The tools provide visualization of program logic, visualization of program structure, program simulation, and statement comments. This research conducts an empirical study to prove the effectiveness of the proposed visualization and simulation tools. The experimental group (comprehends the programs with the simulation and visualization tools) and the control group (without the assisting tools) are compared in terms of working memory capacities, program comprehension strategies, and program comprehension performance. The experiment results show that the proposed visualization and simulation tools can assist the operation of working memory, so that the subjects apply the top-down strategy to comprehend the programs more efficiently.
Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In Psychology of learning and motivation (Vol. 2, pp. 89-195). Academic Press.
Baddeley, A. (1996). The fractionation of working memory. Proceedings of the National Academy of Sciences, 93(24), 13468-13472.
Baddeley, A. D., & Hitch, G. (1974). Working memory. In Psychology of learning and motivation (Vol. 8, pp. 47-89). Academic press.
Baddeley, A. D., & Andrade, J. (2000). Working memory and the vividness of imagery. Journal of experimental psychology: general, 129(1), 126.
Baddeley, A. D. (2002). Is working memory still working?. European psychologist, 7(2), 85.
Brooks, R. (1983). Towards a theory of the comprehension of computer programs. International journal of man-machine studies, 18(6), 543-554.
Bruyer, R., & Scailquin, J. C. (1998). The visuospatial sketchpad for mental images: Testing the multicomponent model of working memory. Acta Psychologica, 98(1), 17-36.
Conway, A. R., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in cognitive sciences, 7(12), 547-552.
Department for Education (UK). (2013a). Computing programmes of study: Key stages 1 and 2. Retrieved from https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/239033/PRIMARY_national_curriculum_-_Computing.pdf
Engle, R. W. (2002). Working memory capacity as executive attention. Current directions in psychological science, 11(1), 19-23.
Gomes, A., & Mendes, A. J. (2007, June). An environment to improve programming education. In Proceedings of the 2007 international conference on Computer systems and technologies (pp. 1-6).
Harrington, M. (2008). Australian Curriculum, Assessment and Reporting Authority Bill 2008. Parliamentary Library.
Information Technology Foundation for Education (Estonia). (2015). ProgeTiger Programme. Retrieved from https://www.hitsa.ee/it-education/educational-programmes/progetiger
Kane, M. J., Hambrick, D. Z., & Conway, A. R. A. (2005). Working Memory Capacity and Fluid Intelligence Are Strongly Related Constructs: Comment on Ackerman, Beier, and Boyle (2005). Psychological Bulletin, 131(1), 66–71. https://doi.org/10.1037/0033-2909.131.1.66
Maalej, W., Tiarks, R., Roehm, T., & Koschke, R. (2014). On the comprehension of program comprehension. ACM Transactions on Software Engineering and Methodology (TOSEM), 23(4), 1-37
Koenemann, J., & Robertson, S. P. (1991, March). Expert problem solving strategies for program comprehension. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 125-130).
Lindberg, R. S., Laine, T. H., & Haaranen, L. (2019). Gamifying programming education in K‐12: A review of programming curricula in seven countries and programming games. British Journal of Educational Technology, 50(4), 1979-1995.
Maalej, W., Tiarks, R., Roehm, T., & Koschke, R. (2014). On the comprehension of program comprehension. ACM Transactions on Software Engineering and Methodology (TOSEM), 23(4), 1-37.
Peitek, N., Apel, S., Parnin, C., Brechmann, A., & Siegmund, J. (2021, May). Program comprehension and code complexity metrics: An fmri study. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE) (pp. 524-536). IEEE.
Rajlich, V., & Wilde, N. (2002, June). The role of concepts in program comprehension. In Proceedings 10th International Workshop on Program Comprehension (pp. 271-278). IEEE
Rugaber, S. (1995). Program comprehension. Encyclopedia of Computer Science and Technology, 35(20), 341-368.
Baddeley, A. (1992). Working memory. Science, 255(5044), 556-559.
Siegel, L. S., & Ryan, E. B. (1989). The development of working memory in normally achieving and subtypes of learning disabled children. Child development, 973-980.
Siegmund, J., Kästner, C., Apel, S., Parnin, C., Bethmann, A., Leich, T., ... & Brechmann, A. (2014, May). Understanding understanding source code with functional magnetic resonance imaging. In Proceedings of the 36th international conference on software engineering (pp. 378-389)
Simmons, F. R., Willis, C., & Adams, A. M. (2012). Different components of working memory have different relationships with different mathematical skills. Journal of experimental child psychology, 111(2), 139-155.
Swanson, H. L. (1999). Reading comprehension and working memory in learning-disabled readers: Is the phonological loop more important than the executive system?. Journal of Experimental child psychology, 72(1), 1-31.
Von Mayrhauser, A., & Vans, A. M. (1995). Program comprehension during software maintenance and evolution. Computer, 28(8), 44-55.
Wang, S., & Gathercole, S. E. (2013). Working memory deficits in children with reading difficulties: Memory span and dual task coordination. Journal of experimental child psychology, 115(1), 188-197.