簡易檢索 / 詳目顯示

研究生: 李世華
Shih-Hua Lee
論文名稱: SLIT2及其相關基因變異與肺癌形成之機制探討
Etiological association of the alteration of SLIT2 and its related genes in lung cancer
指導教授: 王憶卿
Wang, Yi-Ching
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 82
中文關鍵詞: 甲基化基因異質性缺失
英文關鍵詞: methylation, LOH
論文種類: 學術論文
相關次數: 點閱:226下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究背景:自1982年起,癌症即為台灣地區十大死亡原因之首位,其中肺癌的死亡率不論在女性或男性都高居癌症死亡率的首位,儘管目前醫學已相當進步,但對於分子致癌機制仍未完全釐清。目前所知,癌症形成的原因,是由於一連串基因發生變異所造成,和癌症有關的抑癌基因 (tumor suppressor gene) 經研究證實之所以會致癌往往是因其兩個基因座同時發生變異導致失去活性,變異方式多為一基因座產生點突變、小片段鹼基缺失或啟動子過度甲基化 (promoter hypermethylation),而另一基因座發生抑癌基因及鄰近區域DNA大片段缺失 (loss of heterozygosity),導致抑癌基因活性降低而致癌。因此,抑癌基因變異的研究有助於了解癌症形成的機制。
    SLIT2蛋白質是一個分泌於細胞膜外的醣蛋白,在神經細胞發育過程當中,可以控制軸突的分支、遷移,並能引導其生長方向,藉此調節神經細胞的發育。已有許多文獻報導指出SLIT2基因在肺癌、乳癌與大腸癌皆有嚴重的基因大片段缺失的情形,以說明此基因在腫瘤形成或轉移過程的重要性。然而,目前並無同時針對位在SLIT2訊號傳導路徑的重要三者成員如: SLIT2、ROBO1和SRGAP1,在癌症病人的完整分子致癌機轉與變異情形的探討文獻。因此,本研究針對台灣地區的肺癌病人其SLIT2、ROBO1和SRGAP1三個基因變異情形以及SLIT2蛋白與癌細胞轉移的關係做深入的研究。
    材料與方法:為了探討SLIT2、ROBO1和SRGAP1三基因在肺癌病人中變異情形以及與病人病歷資料的相關性,本研究分析了92位台灣地區非小細胞肺癌 (non-small cell lung cancer, NSCLC) 的病人檢體,利用免疫組織染色法 (immunohistochemistry) 觀察病人SLIT2、ROBO1和SRGAP1蛋白的表現,再以反轉錄-聚合酵素鏈反應 (Reverse-transcriptase polymerase chain reaction) 分析組織細胞中SLIT2、ROBO1和SRGAP1三基因mRNA轉錄是否異常,續以聚合酵素鏈反應為基礎的甲基化分析 (methylation-specific PCR) 偵測SLIT2、ROBO1和SRGAP1三基因的啟動子過度甲基化頻率。此外,SLIT2基因在癌症轉移扮演的角色亦利用細胞模式實驗來釐清。
    結果: (1) 實驗結果發現所分析的NSCLC病人中,SLIT2和ROBO1蛋白低表達頻率分別達41.3% (38/92) 與20.1% (19/92),而SLIT2、ROBO1和SRGAP1 mRNA 低表達情形分別為45% (41/92)、11% (10/92) 和34% (31/92),且SLIT2、ROBO1與SRGAP1啟動子甲基化頻率各為63% (58/92)、37% (34/92) 和40.2% (37/92)。(2) SLIT2、ROBO1和SRGAP1蛋白質/mRNA、mRNA/啟動子甲基化、蛋白質/啟動子甲基化表現彼此間都呈現統計上的顯著相關性 (P<0.05)。(3) 此外,SLIT2 mRNA與蛋白屬於低表達者大多是癌症分期晚期的病人 (mRNA, P=0.05; protein, P=0.003) 與有遠端臟器轉移的病人 (mRNA, P=0.023; protein, P=0.013)。(4) 我們也發現,原本有SLIT2基因變異的肺癌細胞株在經過去甲基化藥物的處理之後,會使肺癌細胞株的SLIT2基因啟動子去甲基化、mRNA與蛋白質表現量上升,以及細胞株爬行能力顯著降低 (P<0.001);另一方面,原本爬行潛力不高的肺癌細胞株將SLIT2基因knock down後,會使細胞株的SLIT2 mRNA與蛋白質表現量下降、細胞株爬行能力提高、附著能力下降 (P<0.001)。
    結論:本研究證實,SLIT2與SRGAP1基因變異情形確實在肺癌形成過程中(尤其是癌症轉移)扮演一個很重要的角色,其表現變異的機制可能主要透過啟動子過度甲基化所致,我們的研究是第一篇在癌組織樣本中,同時探討SLIT2、ROBO1和SRGAP1三者參與癌症形成的研究。

    Background: The SLIT2 gene encodes a membrane-associated glycoprotein, which mediates the repulsive axons migration during neural development. It is frequently altered in lung, breast, and colorectal tumors. However, the comprehensive clinical correlation and molecular study in genes involved in the SLIT2/ROBO1/SRGAP1 pathway have never been examined.
    Purpose and study design: To investigate the etiological association of the SLIT2, ROBO1, and SRGAP1 alterations in lung cancer and their clinical significance, we detected the alteration of protein and mRNA expressions of SLIT2, ROBO1, and SRGAP1, as well as promoter hypermethylation of SLIT2, ROBO1, and SRGAP1 in 92 primary lung tumors by immunohistochemistry assay, reverse-transcriptase polymerase chain reaction assay, and methylation-specific PCR assay, respectively. In addition, the role of SLIT2 in cancer metastasis was examined in the lung cell model.
    Results: (1) The frequencies of low protein expression in lung tumors of SLIT2 and ROBO1 were 41.3% (38/92) and 20.1% (19/92), respectively. Low mRNA expression for SLIT2, ROBO1, and SRGAP1 was found in 45% (41/92), 11% (10/92), and 34% (31/92) of lung tumors, respectively. The promoter hypermethylation of SLIT2, ROBO1 and SRGAP1 was 63% (58/92), 37% (34/92) and 40% (37/92), respectively; (2) High concordances were observed between low protein/mRNA expression and promoter hypermethylation for the SLIT2, ROBO1, and SRGAP1 genes (P < 0.05); and (3) The low mRNA/protein expression of SLIT2 was significantly associated with advance-staged patients (mRNA, P = 0.05; protein, P = 0.003) and distant metastasis (mRNA, P = 0.023; protein, P = 0.013); (4) We found that SLIT2 mRNA/protein re-expression and de-methylation along with a decrease in metastasis potential after demethylation reagent 5’-aza -2’-deoxycytidine treatment in lung cancer cell lines (P<0.001). In addition, SLIT2 mRNA/protein loss of expression along with an increase in metastasis potential and a decrease in adhesion potential after knock down SLIT2 gene in lung cancer cell lines were observed (P<0.001).
    Conclusion: The frequency of alteration in any one protein among the three genes in the SLIT2 pathway was 63% (58/92). Among the three SLIT2 pathway genes, alterations of SLIT2 and SRGAP1 contribute predominantly to lung tumorigenesis. Our data reveal the importance of SLIT2 alteration especially in cancer metastasis.

    壹、中文摘要………………………………………………………1 貳、英文摘要............................. 3 叁、文獻總論 ............................... 5 一、台灣肺癌的重要性………………………………………….. 5 二、研究背景…………………………………………………… 8 三、SLIT2 signaling pathway在神經軸索移動、細胞遷徙 所扮演的角色以及SLIT2與癌症的關係………………….. 9 四、SLIT2、ROBO1、SRGAP1基因之結構與功能…………… 11 五、SLIT2、ROBO1、SRGAP1基因異常與癌症形成的報導… 12 1. SLIT2基因異常情形與癌症形成的相關性報導………... 13 2. ROBO1基因異常情形與癌症形成的相關性報導…...…. 14 3. SRGAP1基因異常情形與癌症形成的相關性報導…….. 16 肆、研究目標…………………………………………………..…… 18 伍. 方法總論………………………………………………………… 19 一、研究材料 …………………………………………………… 19 1. 檢體來源及病歷資料……………………………………. 19 2. 肺癌細胞株 ……………………………………………… 19 二、SLIT2與ROBO1蛋白表現分析…………………………… 19 1. 免疫組織染色分析 (Immunohistochemistry assay, IHC)……………………. 20 2. 染色切片之判讀標準…………………………………….. 20 三、SLIT2、ROBO1、SRGAP1基因mRNA分析…………….. 21 1. mRNA萃取……………………………………………….. 21 2. 反轉錄-聚合酵素連鎖反應 (Reverse-transcriptase polymerase chain reaction, RT-PCR)…22 3. 判讀標準…………………………………………………... 23 四、SLIT2、ROBO1、SRGAP1基因啟動子過度甲基化分析...... 23 1. DNA萃取.............................................................................. 23 2. Methylation-specific PCR, MSP assay…………………….. 24 3.判讀標準................................................................................ 25 五、細胞處以去甲基化藥物5’-aza-2’-deoxycytidine (5’-Aza-2’-dC) 之相關分析…………………………...…... 26 1. 細胞培養………………………………………………… 26 2. 細胞加藥處理…………………………………………… 26 3. 細胞株蛋白免疫細胞染色分析 (Immunocytochemistry assay, ICC)…………………...… 27 4. 細胞株DNA及mRNA的抽取、定量及分析……….... 27 5. 細胞株爬行能力分析 (Transwell assay)………….......... 28 六、以RNAi (RNA interference)策略將細胞株之SLIT2 knock down相關分析........................................................... 29 1. 細胞培養………………………………………………… 29 2. 細胞株基因knock down處理……..…………………… 29 3. 細胞株蛋白免疫細胞染色分析 (Immunocytochemistry assay, ICC)……………………… 30 4. 細胞株DNA及mRNA的抽取、定量及分析………..... 30 5. 細胞株爬行能力分析 (Wound Healing assay)………..... 31 6. 細胞株附著能力分析 (Adhesion assay)……..………..... 31 七、統計分析…………………………………………………… 32 陸. 結果................................................. 33 一. 探討台灣地區肺癌病人SLIT2基因/蛋白之變異情形…….. 33 1. SLIT2蛋白表達情形與病歷資料相關性........................... 33 2. SLIT2 mRNA表達情形與病歷資料相關性……………... 33 3. SLIT2基因啟動子高度甲基化情形與病歷資料相關性... 34 4. SLIT2 mRNA、蛋白表達情形、啟動子甲基化與 癌症分期之相關性………………………………..….…... 34 5. SLIT2 mRNA、蛋白不表達與啟動子甲基化間 之相關性......................................... 35 二. 探討台灣地區肺癌病人ROBO1基因/蛋白之變異情形….. 36 1. ROBO1蛋白表達情形與病歷資料相關性....................... 36 2. ROBO1 mRNA表達情形與病歷資料相關性…………… 36 3. ROBO1基因啟動子高度甲基化情形與病歷資料相關性.. 37 4. ROBO1 mRNA、蛋白不表達與啟動子甲基化間 之相關性.......................................... 38 三. 探討台灣地區肺癌病人SRGAP1基因/蛋白之變異情形…. 38 1. SRGAP1 mRNA表達情形與病歷資料相關性………….. 38 2. SRGAP1基因啟動子高度甲基化情形與病歷資料相關性.. 39 3. SRGAP1 mRNA與啟動子高度甲基化間之相關性…….. 39 4. SLIT2、ROBO1與SRGAP1基因任一表達變異與 病歷資料相關性.................................................................. 39 四、細胞以去甲基化藥物5’-aza-2’-deoxycytidine (5’-Aza-2’-dC)之處理結果...................................................... 40 1. model cell 的篩選................................................................ 40 2. 5’-aza-2’-deoxycytidine對SLIT2基因/蛋白表現與細胞 爬行能力之影響 42 五、RNAi處理原先有SLIT2表現細胞株CL1-0之實驗結果... 43 柒、討論............................................................................................... 44 捌、結論及研究應用與未來工作 53 玖、附表 54 拾、附圖 65 拾壹、參考文獻 78

    1. Chen CJ, You SL, Lin LH, Hsu WL, Yang YW. Cancer epidemiology and control in Taiwan: a brief review. Jpn J Clin Oncol 2002;32:S66-81.
    2. Tammemagi CM, Neslund-Dudas C, Simoff M, Kvale P. Smoking and lung cancer survival: the role of comorbidity and treatment. Chest 2004;125:27-37.
    3. Honma H. [Classification of lung cancer by disease stage, symptom type and histological type]. Naika 1966;18:832-6.
    4. De Vuyst P, Dumortier P, Jacobovitz D, Emri S, Coplu L, Baris YI. Environmental asbestosis complicated by lung cancer. Chest 1994;105:1593-5.
    5. Samet JM. Environmental causes of lung cancer: what do we know in 2003? Chest 2004;125:80S-3S.
    6. van der Wal AM, Huizinga E, Orie NG, Sluiter HJ, de Vries K. Cancer and chronic non-specific lung disease (C.N.S.L.D.). Scand J Respir Dis 1966;47:161-72.
    7. Vencevicius V. [Surgical approach in treatment of associated lung pathology - lung cancer at tuberculosis]. Medicina (Kaunas) 2004;40 Suppl 1:149-51.
    8. Lindop PJ, Rotblat J. Induction of lung tumours by the action of radiation and urethane. Nature 1966;210:1392-3.
    9. Wagoner JK, Archer VE, Lundin FE, Jr., Holaday DA, Lloyd JW. Radiation as the cause of lung cancer among uranium miners. N Engl J Med 1965;273:181-8.
    10. Sasaki M, Sugio K, Kuwabara Y, Koga H, Nakagawa M, Chen T, Kaneko K, Hayashi K, Shioyama Y, Sakai S, Honda H. Alterations of tumor suppressor genes (Rb, p16, p27 and p53) and an increased FDG uptake in lung cancer. Ann Nucl Med 2003;17:189-96.
    11. Sozzi G, Pastorino U, Moiraghi L, Tagliabue E, Pezzella F, Ghirelli C, Tornielli S, Sard L, Huebner K, Pierotti MA, Croce CM, Pilotti S. Loss of FHIT function in lung cancer and preinvasive bronchial lesions. Cancer Res 1998;58:5032-7.
    12. Kastan MB. Wild-type p53: tumor can’t stand it. Cell. 2007;128:837-40.
    13. Wang YC, Lu YP, Tseng RC, Lin RK, Chang JW, Chen JT, Shih CM, Chen CY. Inactivation of hMLH1 and hMSH2 by promoter methylation in primary non-small cell lung tumors and matched sputum samples. J Clin Invest 2003;111:887-95.
    14. Shivapurkar N, Virmani AK, Wistuba, II, Milchgrub S, Mackay B, Minna JD, Gazdar AF. Deletions of chromosome 4 at multiple sites are frequent in malignant mesothelioma and small cell lung carcinoma. Clin Cancer Res 1999;5:17-23.
    15. Virmani AK, Fong KM, Kodagoda D, McIntire D, Hung J, Tonk V, Minna JD, Gazdar AF. Allelotyping demonstrates common and distinct patterns of chromosomal loss in human lung cancer types. Genes Chromosomes Cancer 1998;21:308-19.
    16. Rothberg JM, Hartley DA, Walther Z, Artavanis-Tsakonas S. slit: an EGF-homologous locus of D. melanogaster involved in the development of the embryonic central nervous system. Cell 1988;55:1047-59.
    17. Battye R, Stevens A, Perry RL, Jacobs JR. Repellent signaling by Slit requires the leucine-rich repeats. J Neurosci 2001;21:4290-8.
    18. Hu H. Chemorepulsion of neuronal migration by Slit2 in the developing mammalian forebrain. Neuron 1999;23:703-11.
    19. Hu H. Cell-surface heparan sulfate is involved in the repulsive guidance activities of Slit2 protein. Nat Neurosci 2001;4:695-701.
    20. Wu JY, Feng L, Park HT, Havlioglu N, Wen L, Tang H, Bacon KB, Jiang Z, Zhang X, Rao Y. The neuronal repellent Slit inhibits leukocyte chemotaxis induced by chemotactic factors. Nature 2001;410:948-52.
    21. Ghose A, Van Vactor D. GAPs in Slit-Robo signaling. Bioessays 2002;24:401-4.
    22. Wong K, Ren XR, Huang YZ, Xie Y, Liu G, Saito H, Tang H, Wen L, Brady-Kalnay SM, Mei L, Wu JY, Xiong WC, Rao Y. Signal transduction in neuronal migration: roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit-Robo pathway. Cell 2001;107:209-21.
    23. Luo L. Rho GTPases in neuronal morphogenesis. Nat Rev Neurosci 2000;1:173-80.
    24. Schmitz AA, Govek EE, Bottner B, Van Aelst L. Rho GTPases: signaling, migration, and invasion. Exp Cell Res 2000;261:1-12.
    25. Schmid BC, Rezniczek GA, Fabjani G, Yoneda T, Leodolter S, Zeillinger R. The neuronal guidance cue Slit2 induces targeted migration and may play a role in brain metastasis of breast cancer cells. Breast Cancer Res Treat 2007.
    26. Werbowetski-Ogilvie TE, Seyed Sadr M, Jabado N, Angers-Loustau A, Agar NY, Wu J, Bjerkvig R, Antel JP, Faury D, Rao Y, Del Maestro RF. Inhibition of medulloblastoma cell invasion by Slit. Oncogene 2006;25:5103-12.
    27. Dallol A, Morton D, Maher ER, Latif F. SLIT2 axon guidance molecule is frequently inactivated in colorectal cancer and suppresses growth of colorectal carcinoma cells. Cancer Res 2003;63:1054-8.
    28. Stein E, Tessier-Lavigne M. Hierarchical organization of guidance receptors: silencing of netrin attraction by slit through a Robo/DCC receptor complex. Science 2001;291:1928-38.
    29. Forcet C, Ye X, Granger L, Corset V, Shin H, Bredesen DE, Mehlen P. The dependence receptor DCC (deleted in colorectal cancer) defines an alternative mechanism for caspase activation. Proc Natl Acad Sci U S A 2001;98:3416-21.
    30. Georgas K, Burridge L, Smith K, Holmes GP, Chenevix-Trench G, Ioannou PA, Little MH. Assignment of the human slit homologue SLIT2 to human chromosome band 4p15.2. Cytogenet Cell Genet 1999;86:246-7.
    31. Brose K, Bland KS, Wang KH, Arnott D, Henzel W, Goodman CS, Tessier-Lavigne M, Kidd T. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 1999;96:795-806.
    32. Rothberg JM, Jacobs JR, Goodman CS, Artavanis-Tsakonas S. slit: an extracellular protein necessary for development of midline glia and commissural axon pathways contains both EGF and LRR domains. Genes Dev 1990;4:2169-87.
    33. Nguyen Ba-Charvet KT, Brose K, Ma L, Wang KH, Marillat V, Sotelo C, Tessier-Lavigne M, Chedotal A. Diversity and specificity of actions of Slit2 proteolytic fragments in axon guidance. J Neurosci 2001;21:4281-9.
    34. Dallol A, Forgacs E, Martinez A, Sekido Y, Walker R, Kishida T, Rabbitts P, Maher ER, Minna JD, Latif F. Tumour specific promoter region methylation of the human homologue of the Drosophila Roundabout gene DUTT1 (ROBO1) in human cancers. Oncogene 2002;21:3020-8.
    35. Kidd T, Bland KS, Goodman CS. Slit is the midline repellent for the robo receptor in Drosophila. Cell 1999;96:785-94.
    36. Kidd T, Brose K, Mitchell KJ, Fetter RD, Tessier-Lavigne M, Goodman CS, Tear G. Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell 1998;92:205-15.
    37. Park HT, Wu J, Rao Y. Molecular control of neuronal migration. Bioessays 2002;24:821-7.
    38. Dallol A, Da Silva NF, Viacava P, Minna JD, Bieche I, Maher ER, Latif F. SLIT2, a human homologue of the Drosophila Slit2 gene, has tumor suppressor activity and is frequently inactivated in lung and breast cancers. Cancer Res 2002;62:5874-80.
    39. Shivapurkar N, Sood S, Wistuba, II, Virmani AK, Maitra A, Milchgrub S, Minna JD, Gazdar AF. Multiple regions of chromosome 4 demonstrating allelic losses in breast carcinomas. Cancer Res 1999;59:3576-80.
    40. Dallol A, Krex D, Hesson L, Eng C, Maher ER, Latif F. Frequent epigenetic inactivation of the SLIT2 gene in gliomas. Oncogene 2003;22:4611-6.
    41. Astuti D, Da Silva NF, Dallol A, Gentle D, Martinsson T, Kogner P, Grundy R, Kishida T, Yao M, Latif F, Maher ER. SLIT2 promoter methylation analysis in neuroblastoma, Wilms' tumour and renal cell carcinoma. Br J Cancer 2004;90:515-21.
    42. Narayan G, Goparaju C, Arias-Pulido H, Kaufmann AM, Schneider A, Durst M, Mansukhani M, Pothuri B, Murty VV. Promoter hypermethylation-mediated inactivation of multiple Slit-Robo pathway genes in cervical cancer progression. Mol Cancer 2006;5:16.
    43. Sharma G, Mirza S, Prasad CP, Srivastava A, Gupta SD, Ralhan R. Promoter hypermethylation of p16INK4A, p14ARF, CyclinD2 and Slit2 in serum and tumor DNA from breast cancer patients. Life Sci 2007;80:1873-81.
    44. Dammann R, Strunnikova M, Schagdarsurengin U, Rastetter M, Papritz M, Hattenhorst UE, Hofmann HS, Silber RE, Burdach S, Hansen G. CpG island methylation and expression of tumour-associated genes in lung carcinoma. Eur J Cancer 2005;41:1223-36.
    45. Fullwood P, Marchini S, Rader JS, Martinez A, Macartney D, Broggini M, Morelli C, Barbanti-Brodano G, Maher ER, Latif F. Detailed genetic and physical mapping of tumor suppressor loci on chromosome 3p in ovarian cancer. Cancer Res 1999;59:4662-7.
    46. Grati FR, Sirchia SM, Garagiola I, Sironi E, Galioto S, Rossella F, Serafini P, Dulcetti F, Bozzetti A, Brusati R, Simoni G. Losses of heterozygosity in oral and oropharyngeal epithelial carcinomas. Cancer Genet Cytogenet 2000;118:57-61.
    47. Arai K, Shibahara T, Yamamoto N, Noma H. The presence of candidate tumor suppressor gene loci at chromosome 3p for oral squamous cell carcinomas. Oral Oncol 2002;38:763-71.
    48. Hogg RP, Honorio S, Martinez A, Agathanggelou A, Dallol A, Fullwood P, Weichselbaum R, Kuo MJ, Maher ER, Latif F. Frequent 3p allele loss and epigenetic inactivation of the RASSF1A tumour suppressor gene from region 3p21.3 in head and neck squamous cell carcinoma. Eur J Cancer 2002;38:1585-92.
    49. Dasgupta S, Mukherjee N, Roy S, Roy A, Sengupta A, Roychowdhury S, Panda CK. Mapping of the candidate tumor suppressor genes' loci on human chromosome 3 in head and neck squamous cell carcinoma of an Indian patient population. Oral Oncol 2002;38:6-15.
    50. Maitra A, Wistuba, II, Washington C, Virmani AK, Ashfaq R, Milchgrub S, Gazdar AF, Minna JD. High-resolution chromosome 3p allelotyping of breast carcinomas and precursor lesions demonstrates frequent loss of heterozygosity and a discontinuous pattern of allele loss. Am J Pathol 2001;159:119-30.
    51. Grone J, Doebler O, Loddenkemper C, Hotz B, Buhr HJ, Bhargava S. Robo1/Robo4: differential expression of angiogenic markers in colorectal cancer. Oncol Rep 2006;15:1437-43.
    52. Ito H, Funahashi S, Yamauchi N, Shibahara J, Midorikawa Y, Kawai S, Kinoshita Y, Watanabe A, Hippo Y, Ohtomo T, Iwanari H, Nakajima A, Makuuchi M, Fukayama M, Hirata Y, Hamakubo T, Kodama T, Tsuchiya M, Aburatani H. Identification of ROBO1 as a novel hepatocellular carcinoma antigen and a potential therapeutic and diagnostic target. Clin Cancer Res 2006;12:3257-64.
    53. Rutherford S, Hampton GM, Frierson HF, Moskaluk CA. Mapping of candidate tumor suppressor genes on chromosome 12 in adenoid cystic carcinoma. Lab Invest 2005;85:1076-85.
    54. Grepmeier U, Dietmaier W, Merk J, Wild PJ, Obermann EC, Pfeifer M, Hofstaedter F, Hartmann A, Woenckhaus M. Deletions at chromosome 2q and 12p are early and frequent molecular alterations in bronchial epithelium and NSCLC of long-term smokers. Int J Oncol 2005;27:481-8.
    55. Lee MN, Tseng RC, Hsu HS, Chen JY, Tzao C, Ho WL, Wang YC. Epigenetic inactivation of the chromosomal stability control genes BRCA1, BRCA2, and XRCC5 in non-small cell lung cancer. Clin Cancer Res 2007;13:832-8.
    56. Derks S, Lentjes MH, Hellebrekers DM, de Bruine AP, Herman JG, van Engeland M. Methylation-specific PCR unraveled. Cell Oncol 2004;26:291-9.
    57. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004;429:457-63.
    58. Wang B, Xiao Y, Ding BB, Zhang N, Yuan X, Gui L, Qian KX, Duan S, Chen Z, Rao Y, Geng JG. Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell 2003;4:19-29.
    59. Chu YW, Yang PC, Yang SC, Shyu YC, Hendrix MJ, Wu R, Wu CW. Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol 1997;17:353-60.
    60. Ruoslahti E. Cell adhesion and tumor metastasis. Princess Takamatsu Symp 1994;24:99-105.
    61. Zimmermann A, Keller HU. Locomotion of tumor cells as an element of invasion and metastasis. Biomed Pharmacother 1987;41:337-44

    下載圖示
    QR CODE