研究生: |
陳志哲 Chen, Chih-Che |
---|---|
論文名稱: |
應用理論建構以3D虛擬實境教育介入對高中職特定對象學生防制濫用愷他命之成效 The Interventional Effectiveness of 3D Virtual Reality Animation Program on Senior High School Specific Students with Ketamine Use Problem |
指導教授: |
郭鐘隆
Guo, Jong-Long |
學位類別: |
博士 Doctor |
系所名稱: |
健康促進與衛生教育學系 Department of Health Promotion and Health Education |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 解構式計畫行為理論 、3D虛擬實境 、高中職 、藥物濫用防制 |
英文關鍵詞: | decomposed theory of planned behavior, 3D virtual reality, senior high school, drug abuse prevention |
DOI URL: | https://doi.org/10.6345/NTNU202202533 |
論文種類: | 學術論文 |
相關次數: | 點閱:183 下載:89 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
本研究應用解構計畫行為理論為立論基礎,用以檢驗3VRD虛擬實境動畫為特色之教育介入,對高中職特定對象學生防制濫用愷他命之成效。此次研究對象,來自北臺灣基隆市、台北市、新北市共8所高中職學生特定對象學生共220人,以3DVR虛擬實境動畫為特色的多媒體教育介入、結構式問卷,進行結構方程模式(structural equation modeling, SEM))統計分析。結果顯示,有2條路徑是直接影響(direct)的路徑:態度→行為意圖;主觀規範→行為意圖;3條為間接(indirect)影響路徑:知覺有用性→態度→行為意圖;知覺有用性→主觀規範→行為意圖;知覺有趣性→態度→行為意圖,態度、主觀規範和知覺行為控制等三個變項,可解釋行為意圖達91%的變異量(R2=.91,p<.05),證明此教育介入具有顯著成效。知覺有用性、知覺有趣性會透過態度及主觀規範影響行為意圖,顯示多媒體動畫教育介入,對於學生利用科技防制藥物濫用愷他命有顯著影響。學生對於以3DVR動畫為特色的多媒體創新教學,頗為認同,但同時也期待未來能設計浸潤式虛擬實境Head Mounted Display(HMD)的動畫,能有更真實的擬真效果。
Abstract
The Decomposed Theory of Planned Behavior (DTPB) was applied to develop an education program with 3D Virtual reality (VR) animation and test its effectiveness on students of senior high schools. The participants were 220 students t from eight senior high schools in Northern Taiwan. After the implementation of the 3D VR program, structured questionnaire survey was administered. The data was analyzed by Structural Equation Modeling (SEM). The results indicated that 3DVR program on senior high school students was effective. There are 2 paths directly affected and 3 paths indirectly affected behavioral intention. This study provided evidences for the direct effects of attitude and subjective norms on behavioral intentions. Moreover, the roles of attitudes and subjective norms as mediators in the pathway from perceived usefulness to behavioral intentions were supported. The mediational effect of attitudes was also statistically supported in the pathway from perceived playfulness to behavioral intentions.
Three variables, including attitudes, subjective norms, and perceived behavioral control showed 91% explained variation of behavioral intentions(R2=.91,p<.05).In addition, the 3DVR program have showed a significant impact on students apply technology use of Ketamine drugs by the mediational effects of attitudes and subjective norms in the path from perceived usefulness as well as perceived playfulness to behavioral intentions. Most of the participants agreed that 3DVR program with the characteristics of multimedia teaching. They also look forward to the future design of infiltrating virtual reality Head Mounted Display (HMD) animation that shows more realistic effects.
參考文獻
中文部分
行政院衛生福利部(2016)。藥物濫用案件計檢驗統計資料分析。
教育部學生事務與特殊教育司(2016)。各級學校特定人員尿液篩檢作業要點。台北市。
教育部學生事務與特殊教育司(2017)。學生藥物濫用各學制統計表。台北市。
許家寧(2010)。結合創新擴散理論與科技接受模型探討企業員工使用數位學習系統意願之研究。國立中央大學企業管理研究所碩士論文。
郭鐘隆、張俊彥、黃久美、束連文 (2014)。應用理論建構之3D虛擬實境介入對高中職濫用K他命學生的成效。科技部專題研究報告(編號:103-2511-S-003-029-),未出版。
陳志哲、廖容瑜、張萩琴、黃久美、郭鐘隆(2016)。應用理論建構之3D虛擬實境介入對高中職濫用愷他命學生之成效。數位學習科技期刊,第八卷第三期,p51-69。
英文部分
Ajjan, H.,Hartshorne, R. (2008). Investigating faculty decisions to adopt Web 2.0 technologies:Theoryand empirical tests.The Internet and Higher Education,11(2),71-80.
Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50 (2), 179-211.
Allen, C. (2007). Crime, drugs and social theory: a phenomenological approach,Ashgate Publishing Company.
American Psychiatric Association (2013).Diagnostic criteria for common developmental problem of children – DSM‐5. United States: American Psychiatric Association.
Anderson,J.C., Gerbing.D.W.(1988).Structural Equation Modeling in Practice: A Review and Recommended Two-Step Approach. Psychological Bulletin, Vol. 103, No. 3, 411-423.
Bagozzi.R.P., Yi.Y.(1998).On the Evaluation of Structure Equation Models. Journal of the Academy of Marketing Science, Vol.16:1, pp.74-94, 1988.
Baharun, R., Mirghasemi, F., Saadah, N., Rahman, A., Awang, Z. (2015).Application of Decomposed Theory of Planned Behavior On Post Graduate Students Toward On-Line Shopping.Journal Kemanusiaan,Vol,24.
Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ, US: Prentice-Hall, Inc.
Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Concepual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173-1182.
Bewick, B. M., Trusler, K., Barkham, M., Hill, A. J., Cahill, J. & Mulhern, B. (2008). The effectiveness of web-based interventions designed to decrease alcohol consumption—a systematic review. Preventive Medicine, 47(1), 17-26.
Bollen, K. A.(1989).Structural Equations with Latent Variables. New York: John Wiley & Sons.
Bordnick, P. S., Graap, K. M., Copp, H., Brooks, J., Ferrer, M. & Logue, B. (2004). Utilizing virtual reality to standardize nicotine craving research: A pilot study. Addictive behaviors, 29(9), 1889-1894.
Bordnick, P. S., Traylor, A., Copp, H. L., Graap, K. M., Carter, B., Ferrer, M.,Walton, Alicia P. (2008). Assessing reactivity to virtual reality alcohol based cues. Addictive behaviors, 33(6), 743-756.
Burdea, G. & Coiffet, P. (2003). Virtual reality technology. Presence: Teleoperators and virtual environments, 12(6), 663-664.
Chan, C.P., Leung, H., Tang, K.T., Komura,T.(2011). A Virtual Reality Dance Training System Using Motion Capture Technology. IEEE Transactions on learning Technologies ,Vol. 4, No.2.
Chandler, R. K., Fletcher, B. W. & Volkow, N. D. (2009). Treating drug abuse and addiction in the criminal justice system. The Journal of the American Medical Association, 301(2), 183-190.
Chen, C. Y., Storr, C. L. & Anthony, J. C. (2009). Early-onset drug use and risk for drug dependence problems. Addictive behaviors, 34(3), 319-322.
Chen, C.H., Yang,J.C.,Shen,S.,Jeng,M.C. (2007).A Desktop Virtual Reality Earth Motion System in Astronomy Education.AstronomyEducation. Educational Technology & Society, 10 (3), 289-304.
Cheon, J.,Lee, S., Crooks, S. M., Song, J. (2012).An investigation of mobilelearning readiness in higher education based on the theory of planned behavior. Computers & Education ,59(3).
Davis, F. D., Bagozzi, R. P., Warshaw, P. R. (1989).UserAcceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science,35(8).
Degenhardt, L. & Hall, W. (2012). Extent of illicit drug use and dependence, and their contribution to the global burden of disease. The Lancet, 379(9810), 55-70.
Diamantopoulos, A., Siguaw, J.A., 2000. Introducing LISREL. Sage Publications, London.
Gibbons, F. X., Kingsbury, J. H. & Gerrard, M. (2012). Social‐psychological theories and adolescent health risk behavior. Social and Personality Psychology Compass, 6(2), 170-183.
Glegg, S. M. N., Holsti, L., Velikonja, D., Ansley, B., Brum, C., Sartor, D. (2013).Factors Influencing Therapists’ Adoption of Virtual Reality for Brain Injury Rehabilitation. Cyberpsychology Behavior and Social Networking, V16,385-401.
Guilamo-Ramos, V., Litardo, H. A. & Jaccard, J. (2005). Prevention programs for reducing adolescent problem behaviors: Implications of the co-occurrence of problem behaviors in adolescence. Journal of Adolescent Health, 36(1), 82-86.
Guo, J. L., Huang, C. M. & Lee, T. C. (2012). National Web-Based Survey of Illegal Drug Use Among Adolescents. Taipei, Taiwan.
Hatcher, L. (1994). A Step-by-Step Approach to Using the SAS System for Factor Analysis and Structural Equation Modeling. Cary, NC: SAS Institute Inc.
Hoffman, H. G. (2004). Virtual-reality therapy.Scientific Amerrican, 291, 58-65.
Hsieh, P. J (2015).Physicians’ acceptance of electronic medical records exchange: An extension of the decomposed TPB model with institutional trust and perceived risk.international journal of medical informatics, 84(1),1–14.
Hsu, M. H.,Chiu, C. M. (2004). Predicting electronic service continuance with a decomposed theory of planned behavior. Behavior & information Technology,23(5), 359–373.
Hu, Li-tze., Bentler, Peter. M. (1998).Fit Indices in Covariance Structure Modeling: Sensitivity to Underparameterized Model Misspecification. Psychological Methods, Vol. 3. No. 4,424-453.
Huang, C. M., Chien, L. Y., Cheng, C. F. & Guo, J. L. (2012). Integrating Life Skills Into a Theory‐Based Drug‐Use Prevention Program: Effectiveness Among Junior High Students in Taiwan. Journal of School Health, 82(7), 328-335.
Khalsa, J. H., Genser, S., Francis, H. & Martin, B. (2002). Clinical consequences of marijuana. The Journal of Clinical Pharmacology, 42(11 suppl), 7S-10S.
Kline, R. B. (2005). Principles and practice of structural equation modeling (2nd ed.). New York: The Guildford Press.
Lau, A. S. M. (2011). Hospital-Based Nurses' Perceptions of the Adoption of Web 2.0 Tools for Knowledge Sharing, Learning, Social Interaction and the Production of Collective Intelligence. Journal of Medical Internet Research.13(4), p30-30.
Ledox,T., Ngyen,A.S., Bakos-Block,C.,Bordnick, P. (2013).Using virtual reality to study food cravings .Appetite,71:396-402.
Loeffler, C. E., Anderson, T. (1994).The virtual reality casebook. New York : Van Nostrand.
Malek, AI-M., Nik, K. N. M. (2010). Application of Decomposed Theory of Planned Behavior on Internet Banking Adoption in Jordan. Journal of Internet Banking and Commerce, vol. 15, no2.
Mantymaki, M., Merikivi,J., Verhagen,T., Feldberg,F., Rajala, R. (2014).Does a contextualized theory of planned behavior explain whyteenagers stay in virtual worlds?. International Journal of Information Management ,34,567-576.
Merchant, Zahira., Goetz, E.T., Cifuentes, Lauren., Keeney-Kennicutt, W., Davis, T. J. (2014).Effectiveness of virtual reality-based instruction on students’ learning outcomes in K-12 and higher education: A meta-analysis.Computers & Education,V 70,29–40.
Morgan, C. J., Muetzelfeldt, L. & Curran, H. V. (2010). Consequences of chronic ketamine self‐administration upon neurocognitive function and psychological wellbeing: a 1‐year longitudinal study. Addiction, 105(1), 121-133.
Nora, D.V., N., Wang, G. J.,Fowler, J. S.,Molina, P. E., Logan, J., Gatley, S. J., Gifford, A., Ding, Y. S., Wong, C., Pappas, N. R., Zhu, W., Swanson, J. M. (2003). Cardiovascular effects of methylphenidate in humans are associated with increases of dopamine in brain and of epinephrine in plasma. Psychopharmacology,166(3) , 264-270.
Powers, M. B. & Emmelkamp, P. M. (2008). Virtual reality exposure therapy for anxiety disorders: A meta-analysis. Journal of anxiety disorders, 22(3), 561-569.
Preacher, K. J., Hayes. A. F.(2008).Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40 (3), 879-891.
Raykov, T., & Marcoulides, G. A. (1999). On desirability of parsimony in structural equation model selection. Structural Equation Modeling: A Multidisciplinary Journal, 6(3), 292-300.
Raykov, T., & Marcoulides, G. A. (1999). On Desirability of Parsimony in Structural Equation Model Selection. Structural Equation Modeling, 6,292-300.
Reger, G. M. & Gahm, G. A. (2008). Virtual reality exposure therapy for active duty soldiers. Journal of Clinical Psychology, 64(8), 940-946.
Renda, L. M. (2013). Understanding E-learning Adopting Among Brazilian Universities: An Application of The Decomposed Theory of Planned Behavior. Educational computing Research,49(3),363-379.
Rogers, E. M. (1995).Diffusion of innovations. Free Press, United States.
Rothbaum, B. O., Hodges, L., Smith, S., Lee, J. H. & Price, L. (2000). A controlled study of virtual reality exposure therapy for the fear of flying. Journal of consulting and Clinical Psychology, 68(6), 1020.
Rubino, T., Zamberletti, E. & Parolaro, D. (2012). Adolescent exposure to cannabis as a risk factor for psychiatric disorders. Journal of Psychopharmacology, 26(1), 177-188.
Sadaf, A., Newby, T. J., Ertmer, P. A. (2012). Exploring Factors that Predict Preservice Teachers’ Intentions to Use Web 2.0 Technologies Using Decomposed Theory of Planned Behavior. Journal of Research on Technology in Education, Vol (45), No (2),171–195.
Santelli, J.S., Robin, L.,Brener, N. D., Lowry, R. (2001).Timing of Alcohol and Other Drug Use and Sexual Risk Behaviors among Unmarried Adolescents and Young Adults.Family Planning Perspectives, 33(5).
Schwartz, S. J., Mason, C. A., Pantin, H., Wang, W., Brown, C. H., Campo, A. E., et al. (2009). Relationships of social context and identity to problem behavior among high-risk Hispanic adolescents. Youth & society, 40(4), 541-570.
Segars, A. H.(1997).Assessing the unidimensionality of measurement: a paradigm and illustration within the context of information systems research. Omega, vol. 25, issue 1, pages 107-121
Shih,Y.Y., Fang,K. (2004). The use of a decomposed theory of planned behavior to study Internetbanking in Taiwan. Internet Research, 14(3), p213-223.
Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural equation models. In S. Leinhart (Ed.), Sociological methodology 1982 (pp. 290-312). San Francisco: Jossey-Bass.
Sutherland, I. E. (1965).The Ultimate Display.Information Processing Techniques.
Taylor, S.,Todd, P. A. (1995). Understanding Information Technology Usage: A Test of Competing Models.Information Systems Research,6(2).
UNODC. (2016). World drug report 2016 Retrieved from https://www.unodc.org/documents/wdr2016/World_Drug_Report_2016.pdf
WHO. (1993).Life Skills Education For Children and Adolescents in Schools. World Health Organization.