簡易檢索 / 詳目顯示

研究生: 蔡一豪
I-Haur Tsai
論文名稱: 奈米平台上之逆Bouc-Wen模型迴路增益強韌控制
Inverse Bouc-Wen model Roubst loop-shaping control for a nano-positioning stage
指導教授: 陳美勇
Chen, Mei-Yung
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 72
中文關鍵詞: 半導體定位控制壓電致動器遲滯效應迴路增益強韌控制
英文關鍵詞: Semiconductor, positioning control, piezoelectric actuator, hysteresis, loop-shaping, robust control
論文種類: 學術論文
相關次數: 點閱:120下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對單軸壓電定位平台進行遲滯效應補償及設計迴路增益強韌控制器,使平台能消除非線性遲滯效應且達到精密定位。
    由於半導體製程的發展快速,對於晶片載台的定位精度要求也亦趨嚴格,傳統機械架構已難以達到高精度之要求,由於壓電材料具有高解析度、高精度等優點,採用壓電材料作為晶片載台驅動器,驅動平台達到精密定位需求,具有相當的發展潛力。本研究藉由系統鑑別技術,將系統非線性遲滯效應的特性先透過Bouc-Wen模型建立其模型,並進而補償此非線性特性;此外,亦透過適當的控制器設計,使壓電制動平台能達到高精度定位控制效果。實驗結果顯示,所設計的遲滯補償及控制器,能有效地消除非線性影響及達到預期的控制目標。

    This thesis is dedicated in hysteresis effect’s compensation and loop-shaping robust controller design of one axis piezoelectric stage, evading its nonlinear hysteresis, and achieves precise positioning.
    As semiconductor technology advances, the demand for the accuracy of positioning systems also increases. Traditional mechanical transmission systems may not be able to satisfy these demands. Piezoelectric actuators are characterized by high resolution, high accuracy, and large driving force; hence, they are applicable in position control platforms. In this following work, the Bouc-Wen model is adopted to establish a model piezoelectric-nonlinear system, and an inverse Bouc-Wen model, employed to designed to compensate the piezoelectric-nonlinear system, renders the piezoelectric system linear. The result indicates that the method of loop-shaping robust controller for the piezoelectric platform and the compensating technique by the inverse Bouc-Wen model can eliminate nonlinearity effectively, and achieve precise positioning.

    目錄 摘要(i) Abstract (ii) 致謝 (iii) 目錄 (iv) 圖目錄 (vii) 表目錄 (xi) 第一章 緒論 (1) 1.1前言 (1) 1.2文獻回顧 (1) 1.3研究動機 (5) 1.4本論文之架構 (6) 第二章 Bouc-Wen模型與其參數檢測 (7) 2.1 Bouc-Wen Model之非線性系統模式 (7) 2.2 Bouc-Wen模型之敏感度測試 (8) 2.3基因演算法 (11) 2.3.1說明 (11) 2.3.2流程 (12) 第三章 強韌控制理論介紹 (14) 3.1範數(Norm) (14) 3.1.1範數定義 (14) 3.1.2系統範數 (15) 3.2線性分式轉換與互質因式分解 (16) 3.2.1線性分式轉換 (16) 3.2.2互質因式分解 (17) 3.3系統不確定性模型 (18) 3.4強韌控制架構之一般化 (20) 3.5間隙度量 (21) 3.6系統強韌性分析 (22) 3.7控制器設計 (23) 3.8迴路成型設計 (25) 第四章 實驗架構與硬體介紹 (29) 4.1壓電奈米定位平台硬體基本架構 (29) 4.1.1壓電平台 (29) 4.1.2資料擷取卡 (31) 4.1.3電壓放大器 (32) 4.1.4光學位移感測器 (33) 4.2訊號流程與控制架構 (34) 第五章 系統鑑別補償與控制器設計 (36) 5.1系統鑑別與訊號輸入 (36) 5.2非線性系統鑑別 (37) 5.3 Bouc-Wen模型補償 (40) 5.4系統鑑別實驗及結果 (42) 5.5強韌控制器設計 (45) 第六章 控制器安裝與實驗結果 (48) 6.1補償比較 (48) 6.2步階響應實驗 (51) 6.3速度分析 (54) 6.4弦波響應實驗 (62) 第七章 結論及未來展望 (68) 7.1結論 (68) 7.2未來展望 (68) 文獻參考 (70)

    [1] H.S. Kim, G.S. Choi, and G.H. Choi, "A Study on Position Control of Piezoelectric Actuators," IEEE International Symposium on Industrial Electronics, pp. 851-855, 1997.
    [2] J.H. Oh, G.H. Choi, and G.S. Choi, "Repetitive Tracking Control of a Coarse-Fine Actuator," Proceedings of the IEEE International Conference on Advanced Intelligent Mechatronics, pp. 19-23, 1999.
    [3] Y.A. Lim, G.S. Choi, and G.H. Choi, "Tracking Position Control of Piezoelectric Actuators for Periodic Reference Inputs," Mechatronics, vol. 12, pp. 669-684, 2002.
    [4] P. Ge. and M. Jouaneh, "Tracking Control of a Piezoceramic Actuator," IEEE Transactions on Control Systems Technology, vol. 4, pp. 209-216, 1996.
    [5] D. Song and C.J. Li, "Modeling of Piezoactuator’s Nonlinear and Frequency Dependent Dynamics," Mechatronics, vol. 9, pp. 319-410, 1999.
    [6] D. Crof and S. Devasia, "Hysteresis and Vibration Compensation for Piezoactuators," Journal of Guidance, Control, and Dynamics, vol. 21, pp. 710-717, 1998.
    [7] M.K. Lee and Y.C. Yu "A Dynamic Nonlinearity Model for a Piezo-Actuated Positioning System," IEEE International Conference on Mechatronics, pp. 28-33, 2005.
    [8] Y.K. Wen, "Method for Random Vibration of Hysteretic Systems," Journal of the Engineering Mechanics Division, vol. 102, pp. 249-263, 1976.
    [9] W.Guo and T.S. Low, "Modeling of a Three-Layer Piezoelectric Bimorph Beam with Hysteresis," Journal of Microelectromechanical Systems, vol. 4, pp. 230-237, 1995.
    [10] Pekka Ronkanen, Pasi Kallio, Matti Vilkko, and Heikki N. Koivo, "Displacement Control of Piezoelectric Actuators Using Current and Voltage", IEEE/ASME Transaction on Mechatronics, Vol. 16, No. 1, pp. 160-166, 2011.
    [11] Y.S. Kung and R.F. Fung, "Precision Control of Piezoceramic Actuator Using Neural Network," IEEE International Symposium on Industrial Electronics, pp. 1866-1871, 2002.
    [12] Qingsong Xu, "Identification and Compensation of Piezoelectric Hysteresis Without Modeling Hysteresis Inverse", IEEE Transactions on Industrial Electronics, vol. 60, pp. 3927-3937, 2013.
    [13] G. Song, J. Zhao, and De Abreu-Garcia J., "Tracking Control of a Piezoceramic Actuator with Hysteresis Compensation Using Inverse Preisach Model," IEEE/ASME transaction on mechatronics, vol. 10, pp. 198-209, 2005.
    [14] P. Guo, X. Wang, and Y. Han, “The Enhanced Genetic Algorithms for the Optimization Design”, International Conference on Biomedical Engineering and Informatics, pp. 2990-2994, 2010.
    [15] B.A. Francis, A.R. Tannenbaum, and J.C. Doyle, Feedback Control Theory, Macmillan, 1992.
    [16] K. Zhou and J.C. Doyle, Essentials of Robust Control, Prentice Hall, 1998.
    [17] D.C. McFarlane and K. Glover, Robust Controller Design using Normalized Coprime Factor Plant Descriptions, Springer-Verlag, 1989.
    [18] K. Glover and D.C. McFarlane and, "A Loop Shaping Design Procedure using Hinf Synthesis," IEEE Transactions on Automatic Control, vol. 37, pp. 759-769, 1992.
    [19] National Instruments NI PCI, "http://sine.ni.com/nips/cds/iew/p/lang/zht/nid/1413
    6".
    [20] Physik Instrumente E-663 , "http://www.physikinstrumente.com/en/products/prdet
    ail.php?sortnr=601800".
    [21] MicroE Systems (2011) Mercury Encoders, "http://www.microesys.com/ (accessed xx) ".
    [22] 趙清風, 使用Matlab控制之系統識別, 全華圖書, 2001.
    [23] B. De Moor and P. Van Overschee, "Subspace Algorithms for the Stochastic Identification Problem," IEEE Conference on Decision and Control, pp. 1321-1326, 1991.
    [24] B. De Moor and P. Van Overschee, "N4SID: Subspace Algorithms for the Identification of Combined Deterministic-Stochastic System," Autimatica, vol. 30, pp. 75-93, 1994.

    下載圖示
    QR CODE