簡易檢索 / 詳目顯示

研究生: 林定諺
Lin, Ting-Yen
論文名稱: 以整合型科技接受模式觀點探究台灣運動彩券官網設置聊天機器人之研究
Study of the Chatbots on Taiwan Sports Lottery Website Based on the Unified Theory of Acceptance and Use of Technology Model Perspective
指導教授: 陳美燕
Chen, Mei-Yen
口試委員: 陳美燕
Chen, Mei-Yen
董益吾
Tung, I-Wu
林文斌
Lin, Wen-Bin
口試日期: 2025/01/11
學位類別: 碩士
Master
系所名稱: 運動休閒與餐旅管理研究所運動休閒與餐旅管理碩士在職專班
Graduate Institute of Sport, Leisure and Hospitality Management_Continuing Education Master's Program of Sport, Leisure and Hospitality Management
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 65
中文關鍵詞: 生成式AI運動博弈自然語言處理行為意圖
英文關鍵詞: Generative AI, sports gambling, natural language processing, behavioral intention
DOI URL: http://doi.org/10.6345/NTNU202500246
論文種類: 學術論文
相關次數: 點閱:101下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣運彩為我國唯一合法運動彩券發行機構,在近年營收屢創新高並且營運穩定的情況下,增添便民服務,與創新科技積極結合。本研究以整合型科技接受模式理論為基礎,旨在探討消費者對於台灣運彩官網設置聊天機器人的行為意圖。以具投注經驗之消費者為研究對象,採線上問卷調查方式蒐集資料進行問卷調查,回收有效問卷105份,使用SPSS 23.0軟體,研究採用Cronbach’ s α進行量表信度之考驗,並以描述性統計、獨立樣本t檢定、皮爾森積差相關分析和多元迴歸分析進行資料分析。研究結果如下:一、運動彩券的消費者主要是以「男性」、「30至39歲」、「商」、可支配所得「新臺幣 40,001至60,000元」、「大專院校」學歷者、「未婚」者居多。二、有無台灣運動彩券官網使用經驗在「社會影響」有顯著差異;有無台灣運動彩券官網網路投注使用經驗在「績效預期」與「社會影響」有顯著差異;有無聊天機器人使用經驗在「有利條件」呈現與其他群組具顯著差異。三、整合型科技接受模式中的「績效預期」、「付出預期」、「社會影響」及「有利條件」構面對「行為意圖」皆是顯著正相關。四、整合型科技接受模式的「績效預期」、「社會影響」及「有利條件」構面對「行為意圖」具有顯著的解釋力。本研究建議台灣運彩設置聊天機器人,應有效維護效能、考量使用者方便性、實用性與使用後績效,以增加使用意願,進而提升消費者使用意願並促進擴大服務群眾數量。

    Taiwan Sports Lottery, the sole legal sports betting operator in Taiwan, had entered its third issuance period in 2024. With steadily growing revenue and a commitment to enhancing customer services, the company has been actively integrating innovative technologies. This study, grounded in the Unified Theory of Acceptance and Use of Technology (UTAUT), aims to investigate the influence of implementing a chatbot on consumers' behavioral intention towards the Taiwan Sports Lottery website. An online survey was conducted to collect data from consumers with betting experience. A total of 105 valid questionnaires were collected. Data analysis was performed using SPSS 22.0, including Cronbach's alpha for reliability testing, descriptive statistics, independent sample t-test, Pearson correlation analysis, and multiple regression analysis. The findings obtained were as follows: 1. The majority of sports lottery consumers were "male," aged "30-39," with a "business" occupation, an income of "NTD 40,001-60,000," a "college" education level, and were "single." ; 2. Significant differences were found in terms of "social influence" between users with and without experience using the Taiwan Sports Lottery website. Significant differences were found in terms of "performance expectancy" and "social influence" between users with and without online betting experience on the Taiwan Sports Lottery website. Users with chatbot experience showed significant differences in "facilitating conditions" compared to other groups. ; "Performance expectancy," "Effort expectancy," "Social influence," and "Facilitating conditions" of UTAUT model were all positively correlated with "behavioral intention." ; 3. "Performance expectancy," "Social influence," and "Facilitating conditions" of UTAUT model significantly explained the variance in "behavioral intention.". The result of this study recommended that Taiwan Sports Lottery should consider implementing a chatbot, focusing on effective maintenance, user-friendliness, and post-use performance to increase consumer usage intention, thereby promoting the expansion of the service population.

    第壹章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 4 第三節 研究問題 4 第四節 名詞釋義 6 第貳章 文獻探討 8 第一節 整合型科技接受模式 8 第二節 運動彩券與台灣運彩 11 第三節 行為意圖 14 第四節 生成式AI與聊天機器人 16 第參章 研究方法 20 第一節 研究架構 20 第二節 研究流程 21 第三節 研究對象 22 第四節 研究工具 22 第五節 資料處理與統計分析 27 第肆章 結果與討論 29 第一節 運動彩券消費者之特性與現況分析 29 第二節 不同人口統計變項投注者對台灣運彩官網設置聊天機器人的整合型科技接受模式因素之差異情形 32 第三節 不同人口統計變項之投注者對於台灣運彩官網設置聊天機器人之行為意圖差異情形 37 第四節 消費者對於台灣運彩官網設置聊天機器人之行為意圖相關分析 40 第五節 消費者對於台灣運彩官網設置聊天機器人行為意圖之解釋情形 42 第伍章 結論與建議 44 第一節 結論 44 第二節 建議 46 第三節 研究限制. 48 參考文獻 50 中文文獻 50 英文文獻 54 附錄一 正式問卷 63

    王癸元、林曉鴻、蔡依妮、王柏茵 (2024)。以UTAUT模式檢驗文化差異對大學生行動支付使用意圖之研究。台灣管理學刊,24(1),53-80。https://doi.org/10.6295/TAMJ.202402_24(1).0003
    王紹蓉 (2023)。生成式AI的傳播研究趨勢與展望。臺灣傳播學刊,(44),95-102。
    王博玄、鄭裕勳、王泓文 (2024)。以UTAUT模型為基礎探討影響藝術創作者使用生成式AI之因素。圖文傳播藝術學報,192-203。
    方進義 (2023)。跨域職能提升-應用聊天機器人於運動休閒之營收管理課程之學習效果之影響。體育學報,56(S),1-19。https://doi.org/10.6222/pej.202312_56(S).0001
    台灣運彩 (2025)。台灣運彩官網首頁。擷取於2025年1月14日https://article.sportslottery.com.tw/
    朱玲、柳伯力、謝晉達、趙寧 (2008)。體育博彩論。四川科學技術出版社。
    行政院體育委員會 (2002)。運動彩券制度規劃之研究。行政院體育委員會。
    全國法規資料庫 (2024)。運動彩券發行條例。擷取於2024年10月15日http://law.moj.gov.tw/LawClass/LawAll.aspx?PCode=H0120050
    任維廉、呂堂榮、劉柏廷 (2009)。科技接受行為模式之整合分析-三個主要模式之比較。資管評論,15(1),101-138。
    李靜芳 (2020)。利用整合科技接受模式探討便利商店APP之採用行為。觀光與休閒管理期刊,8(2),105-113。https://doi.org/10.6510/JTLM.202012_8(2).0010
    吳良民 (2004)。淺談大陸體育彩票發展現況。大專體育雙月刊,73,26-31。
    吳泰毅、鄧玉羚 (2023)。初探台灣民眾對人工智慧產品與服務之採用經驗與信任感。資訊社會研究,(44),97-127。 http://doi.org/10.29843/JCCIS.202301_(44).0004
    林忠程、張弘文、陳智明 (2021)。應用計畫行為理論探討運動博弈消費者參與行為模式。嘉大體育健康休閒期刊,20(1),1-16。https://doi.org/10.6169/NCYUJPEHR.202106_20(1).01
    林素吟 (2005)。服務品質、滿意度與購買意圖關係之研究:層級干擾迴歸分析之應用。管理評論,24(2),1-17。https://doi.org/10.6656/MR.2005.24.2.CHI.1
    林素鉁、趙正敏 (2021)。民眾對行動健康照護採用行為意圖之決定因素?擴展UTAUT模式。管理資訊計算,10(2),10-23。https://doi.org/10.6285/MIC.202109_10(2).0002
    林振山、林聰哲、李世昌 (2019)。運動彩券參與者行前期望、體驗感受對再次消費之影響。休閒事業研究,17(2),17–39。https://doi.org/10.6746/LIR.201906_17(2).0002
    施婉婷、王俊人 (2014)。運動彩券購買決策因素:方法目的鏈之應用。大專體育學刊,16(2),136-150。https://doi.org/10.5297/ser.1602.002
    洪惠珍 (2002)。中國大陸體育彩票銷售現況與成效。大專體育雙月刊,61,71-76。
    高立學 (2009),運動彩券購買與運動觀賞。休閒運動期刊,8,29-36。
    胡宗鳳、江文鉅 (2017)。以整合性科技接受模式探討閱聽者下載新聞類行動應用程式之意願。管理資訊計算,6(1),125-134。https://doi.org/10.6285/MIC.6(1).10
    胡喬蕙、楊昌展 (2023)。臺灣運動彩券研究之回顧。運動研究,32(1),75-91。https://doi.org/10.6167/JSR.202306_32(1).0005
    徐茂洲 (2009)。職棒運動觀賞者對運動彩券行銷組合活動、類型與購買意願之研究。運動休閒管理學報,6(2),35-52。https://doi.org/10.6214/JSRM.200912_6(2).0003
    徐達光 (2003)。消費者心理學。東華書局。
    張少熙、方佩欣 (2013)。我國運動彩券發行現況及未來展望。運動管理,20,3-10。
    張芷寧、張家綺、高欣 (2024)。以整合型科技接受模式探討網紅行銷媒合平台持續使用意願之研究。紡織綜合研究期刊,34(2),83-101。https://doi.org/10.6439/TTRJ.202404_34(2).0011
    陳文江、葉惠仁 (2021)。無人商店影響消費者行為之探討:以7-11智能自販機為例。管理資訊計算,10,29-42。https://doi.org/10.6285/MIC.202107/SP_01_10.0004
    陳佩宜 (2014)。應用整合科技接受模式探討數位閱讀之研究-以桃園地區民眾為例。蘭陽學報,(15),12-22。https://doi.org/10.6665/JLYIT.2016.15.12
    陳冠仰、陳柏元、戴有德、巫立宇 (2016)。知覺品質、知覺價值與行為意圖關係之研究-交易成本觀點。臺大管理論叢,27(1),191-224。https://doi.org/10.6226/NTUMR.2016.MAR.C102-019
    陳富源 (2004)。臺灣發行運動彩券之研究 [未出版碩士論文]。國立臺灣師範大學。
    陳億瑜、陳姿君、陳金淵 (2020)。以整合型科技接受模式探討個案醫院使用電子病歷查閱系統APP之行為意圖及滿意度之影響因素。病歷資訊管理,18(1),79-81。
    郭建明、陳銘仁 (2014)。以整合型科技接受模式探討使用雲端網路硬碟之研究-以Dropbox為例。資訊與管理科學,7(2),50-69。
    黃翎妍 (2023,2月15日)。世足賽帶動民眾買氣!台灣運彩2022年「狂賣602億」創新高。Yahoo!新聞。https://tw.news.yahoo.com/%E4%B8%96%E8%B6%B3%E8%B3%BD%E5%B8%B6%E5%8B%95%E6%B0%91%E7%9C%BE%E8%B2%B7%E6%B0%A3-%E5%8F%B0%E7%81%A3%E9%81%8B%E5%BD%A92022%E5%B9%B4-%E7%8B%82%E8%B3%A3602%E5%84%84-%E5%89%B5%E6%96%B0%E9%AB%98-070536452.html
    黃惠聆 (2024,8月12日)。台灣運彩 巴黎奧運期間銷售逾14億元。工商時報。https://www.ctee.com.tw/news/20240812701390-431401
    黃順顯、方怡堯 (2005)。由運動彩券發行探討運動員賭博成癮行為。大專體育雙月刊,78,95-100。
    黃維民、吳旻蓁 (2024)。探討民眾採用聊天機器人作為輔助醫療工具之行為研究。電腦稽核,(50),52-66。
    黃麗夙、游玉芬 (2022)。以整合型科技接受模式探討我國壽險業採用智能理財服務之研究。當代商管論叢,7(1),81-104。https://doi.org/10.6852/JCBM.202212_7(1).05
    黃瀚萱 (2020)。政府治理智慧化:自然語言處理的可能性。國土及公共治理季刊,8(3),30-37。
    楊豐兆、張祐源 (2021)。以黏著度觀點應用於UTAUT模型探討直播平臺持續關注行為之研究。臺中教育大學學報:數理科技類,35(2),35-56。
    廖珮妏、余鑑、于俊傑 (2012)。應用整合型科技接受模式與創新擴散通用模型於企業導入數位學習之多層次分析。電子商務學報,14(4),657-687。https://doi.org/10.6188/JEB.2012.14(4).04
    盧品青 (2023)。《時來運轉》台灣英雄前進亞運 運彩開盤且乎你抽現金。中時新聞網。https://www.chinatimes.com/realtimenews/20230922000020-260403?chdtv
    盧瑀安、連世周、孫世倩、陳輝農、陳柏文 (2023)。餐飲外送App消費者持續使用意向探究。明新學報,46,1-35。https://www.airitilibrary.com/Article/Detail?DocID=1728760X-N202309210001-00005
    簡正昌、謝錦堂 (2015)。平板電腦使用行為之研究-UTAUT模型之應用。載於淡江大學企業管理學系(主編),提升競爭力與經營管理學術研討會 (頁191-206)。淡江大學企業管理學系。https://doi.org/10.6627/CIEBM.2015.10.11
    譚亮、高翯、黃東治、王俊人 (2020)。臺灣民眾運動消費水準時空演變特徵及影響因素分析。臺灣體育學術研究,(69),1-18。https://doi.org/10.6590/TJSSR.202012_(69).01
    TSNA (2024)。運彩觀測站》運彩一月49億 線上投注42% 持續上升中。TSNA體育新聞團隊。https://tsna.com/article/85005
    Adamopoulou, E., & Moussiades, L. (2020). Chatbots: History, technology, and applications. Machine Learning with Applications, 2, Article 100006. http://doi.org/10.1016/j.mlwa.2020.100006
    Ajzen, I. (1991). The Theory of Planned Behavior. Organizational Behavior and Human Decision Processes. 50, 179-211. https://doi.org/10.1016/0749-5978(91)90020-T
    Ajzen, I., & Driver, B. L. (1991). Prediction of leisure participation from behavioral, normative, and control beliefs: An application of the theory of planned behavior. Leisure Sciences, 13(3), 185–204. https://doi.org/10.1080/01490409109513137
    Ajzen, I. (2002). Perceived behavioral control, self-efficacy, locus of control, and the theory of planned behavior. Journal of Applied Social Psychology, 32(4), 665–683. https://doi.org/10.1111/j.1559-1816.2002.tb00236.x
    Baker, D. A., & Crompton, J. L. (2000). Quality, satisfaction and behavioral intentions. Annals of Tourism Research, 27(3), 785-804. https://doi.org/10.1016/S0160-7383(99)00108-5
    Baker, A., & Donthu, N., & Kumar, V. (2015). Investigating How Word of Mouth Conversations About Brands Influence Purchase and Retransmission Intentions. Journal of Marketing Research. 53, 150723133545004. https://doi.org/10.1509/jmr.14.0099
    Barki, H., & Hartwick, J. (1994). Measuring User Participation, User Involvement, and User Attitude. MIS Quarterly. 18, 59-82. https://doi.org/10.2307/249610
    Blaise, R., Halloran, M., & Muchnick, M. (2018). Mobile Commerce Competitive Advantage: A Quantitative Study of Variables that Predict M-Commerce Purchase Intentions, Journal of Internet Commerce, Vol. 17(2), pp. 96-114.
    Boubker, O. (2023). From chatting to self-educating: Can AI tools boost student learning outcomes? Expert Systems with Applications, 238, 121820. http://doi.org/10.1016/j.eswa.2023.121820
    Chen, C. F., & Chen, F. S. (2010). Experience quality, perceived value, satisfaction and behavioral intentions for heritage tourists. Tourism Management, 31(1), 29-35.
    Chen, Z., & Dubinsky, A. J. (2003). A conceptual model of perceived customer value in e-commerce: A preliminary investigation. Psychology & Marketing, 20(4), 323–347. https://doi.org/10.1002/mar.10076
    Ciechanowski, L., Przegalinska, A., & Magnuski, M., & Gloor, P. (2018). In the Shades of the Uncanny Valley: An Experimental Study of Human-Chatbot Interaction. Future Generation Computer Systems, 92. https://doi.org/10.1016/j.future.2018.01.055
    Compeau, D. R., & Higgins, C. A. (1995). Computer Self-Efficacy: Development of a Measure and Initial Test. MIS Quarterly, 19(2), 189–211. https://doi.org/10.2307/249688
    Coups, E., Haddock, G., & Webley, P. (1998). Correlates and predictors of lottery play in the United Kingdom. Journal of Gambling Studies, 14(3), 285-303.
    Dabholkar, P.A., & Bagozzi, R.P. (2002). An attitudinal model of technology-based self-service: Moderating effects of consumer traits and situational factors. Journal of the Academy of Marketing Science, 30, 184–201. https://doi.org/10.1177/0092070302303001
    Davis, F. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13, 319-340. https://doi.org/10.2307/249008
    Davis, F.D., Bagozzi, R.P., & Warshaw, P.R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35, 982-1003. ttps://doi.org/10.1287/mnsc.35.8.982
    Davis, F.D., Bagozzi, R.P., & Warshaw, P.R. (1992). Extrinsic and Intrinsic Motivation to Use Computers in the Workplace1. Journal of Applied Social Psychology, 22: 1111-1132. https://doi.org/10.1111/j.1559-1816.1992.tb00945.x
    de Andrés-Sánchez, J. & Gené-Albesa, J. (2023). Explaining Policyholders’ Chatbot Acceptance with an Unified Technology Acceptance and Use of Technology-Based Model. Journal of Theoretical and Applied Electronic Commerce Research. 2023, 18, 1217–1237. https://doi.org/10.3390/jtaer18030062
    Dwyer, B., Hayduk III, T., & Drayer, J. (2022). A comparative analysis of sports gambling in the United States. International Journal of Sports Marketing & Sponsorship, 23(4), 684–706. https://doi.org/10.1108/IJSMS-03-2021-0074
    Fishbein, M., & Ajzen, I. (1975). Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research. Reading, MA: Addison-Wesley.
    Fryer, Luke & Nakao, Kaori & Thompson, Andrew. (2019). Chatbot learning partners: Connecting learning experiences, interest and competence. Computers in Human Behavior, 93. 279-289. https://doi.org/10.1016/j.chb.2018.12.023
    Gay, D. (1992). Solving problems using elementary mathematics. San Francisco, Calif. And Toronto: Dellen Pub. Co.
    Ha, T., Yu, H., Lim, B., Jung, H., Brooks, C., Krause, J., & Dauenhauer, B. (2024). Using ChatGPT in the field of kinesiology: Opportunities and considerations. Journal of Physical Education and Sport, 24, 3-12. https://doi.org/10.7752/jpes.2024.01001
    Hill, J., Ford, W. R., & Farreras, I. G. (2015). Real Conversations with Artificial Intelligence: A Comparison between Human-Human Online Conversations and Human-Chatbot Conversations. Computers in Human Behavior, 49, 245-250.
    https://doi.org/10.1016/j.chb.2015.02.026
    Hirschberg, J. & Manning, C. D. (2015). Advances in natural language processing. Science, 349(6245), 261-266.
    Hsu, C. L., & Lu, H. P. (2004). Why do people play on-line games? An extended TAM with social influences and flow experience. Information & Management, 41. 853-868. https://doi.org/10.1016/j.im.2003.08.014.
    Hutter, K., & Hautz, J., & Dennhardt, S., & Füller, J. (2013). The impact of user interactions in social media on brand awareness and purchase intention: The case of MINI on Facebook. Journal of Product & Brand Management, 22, 342 - 351. https://doi.org/10.1108/JPBM-05-2013-0299
    Jin, N., Lee, S., & Lee, H. (2015). The effect of experience quality on perceived value, satisfaction, image and behavioral intention of water park patrons: New versus repeat visitors. International Journal of Tourism Research, 17(1), 82-95.
    Keller, K. L., & Kotler, P. (2012). Branding in B2B firms. In Handbook of businessto-business marketing. Edward Elgar Publishing. https://doi.org/10.4337/9781781002445.00021
    Ketelaar, P. E., Bernritter, S. F., Riet, J. V., Hühn, A. E., van Woudenberg, T. J., Müller, B. C. N., & Janssen, L. (2017). “Disentangling location-based advertising: the effects of location congruency and medium type on consumers' ad attention and brand choice”, International Journal of Advertising, Vol, 36(2), pp. 356-367.
    Kim, J., & Park, J., & Glovinsky, P. (2018). Customer involvement, fashion consciousness, and loyalty for fast-fashion retailers. Journal of Fashion Marketing and Management: An International Journal, 22, https://doi.org/10.1108/JFMM-03-2017-0027
    Knight, C. (2020). Japan using robots and Chatbots to greet the world at the 2020 Olympics. https://thechatbot.net/robots-and-chatbots-2020-olympics/
    Koutsiouris, V., & Vrechopoulos, A., & Doukidis, G. (2016). Classifying, profiling and predicting user behavior in the context of location based services. Journal of Electronic Commerce Research, 17(4), 340-357.
    Lam, T. and Hsu, C.H.C. (2006) Predicting Behavioral Intention of Choosing a Travel Destination. Tourism Management, 27, 589-599. https://doi.org/10.1016/j.tourman.2005.02.003
    Lee, Y. C. (2018). “Comparing factors affecting attitudes toward LBA and SoLoMo advertising”, Information System E-Business Management, Vol. 16, pp. 357-381.
    Levin, I. P., Snyder, M. A., & Chapman, D. P. (1988). The interaction of experiential and situational factors and gender in a simulated risky decision-making task. The Journal of Psychology, 122(2),173–181
    Lim, W. M., Gunasekara, A., Pallant, J. L., Pallant, J. I., & Pechenkina, E. (2023). Generative AI and the Future of Education: Ragnar¨ok or Reformation? A Paradoxical Perspective from Management Educators. The International Journal of Management Education, 21(2). http://doi.org/10.1016/j.ijme.2023.100790
    Lucas, H.C., & Spitler, V.K. (1999). Technology Use and Performance: A Field Study of Broker Workstations*. Decision Sciences, 30, 291-311.
    Ma, S-C., Su, C-Y., Chen, S-F., Sato, S., & Ma, S-M. (2023). Analysis of COVID-19-Related User Content on the Baseball Bulletin Board in 2020 through Text Mining. Behavioral Sciences, 2023, 13, 551. https://doi.org/10.3390/bs13070551
    Marr, B. (2023). Machine learning in practice: How does Amazon’s Alexa really work? [Online]. Bernard Marr & Co. Retrieved 06 January 2023. https://bernardmarr.com/machine-learning-in-practice-how-does-amazons-alexa-really-work/
    Mathieson, K. (1991). Predicting User Intentions: Comparing the Technology Acceptance Model with the Theory of Planned Behavior. Information Systems Research, 2, 173-191. http://dx.doi.org/10.1287/isre.2.3.173
    Mathwick, C., & Malhotra, N., & Rigdon, E. (2001). Experiential value: conceptualization, measurement and application in the catalog and Internet shopping environment*1. Journal of Retailing, 77, 39-56.
    Min, Q., Ji, S., & G. Qu, G. (2008). Mobile commerce user acceptance study in China: A revised UTAUT model. Tsinghua Science and Technology, 13 (3), 257-264. http://doi.org/10.1016/S1007-0214(08)70042-7
    Moore, G.C. & Benbasat, I. (1991). Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation. Information Systems Research, 2, 173-191. http://doi.org/10.1287/isre.2.3.192
    Naraine, M.L., & Wanless, L. (2020). Going All in on AI: examining the value proposition of and integration challenges with one branch of artificial intelligence in sport management, Sports Innovation Journal, 1, 49-61. https://doi.org/10.18060/23898
    Naylor, R. W., Lamberton, C. P., & West, P. M. (2012). Beyond the “like” button: The impact of mere virtual presence on brand evaluations and purchase intentions in social media settings. Journal of Marketing, 76(6), 105-120. https://doi.org/ 10.1509/jm.11.0105
    Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1985). A conceptual model of service quality and its implications for future research. Journal of Marketing, 49(4), 41-50.
    Paul, J., Ueno, A., & Dennis, C. (2023). ChatGPT and consumers: Benefits, pitfalls and future research agenda. International Journal of Consumer Studies, 47(4), 1213-1225. http://doi.org/10.1111/ijcs.12928
    Petrick, J. F. (2004). The roles of quality, value, and satisfaction in predicting cruise passengers’ behavioral intentions. Journal of Travel Research, 42(4), 397-407. https://doi.org/10.1177/0047287504263037
    Pitt, H., Thomas, S. L, Bestman, A., Randle, M., & Daube, M. (2018). Do wagering advertisements contain attention strategies that may appeal to children? An interpretative content analysis. Health Promotion Journal of Australia, 29(3), 265–273. https://doi.org/10.1002/hpja.12
    Puriwat, W., & Tripopsakul, S. (2021). Explaining Social Media Adoption for a Business Purpose: An Application of the UTAUT Model. Sustainability 2021, 13, 2082. https://doi.org/10.3390/su13042082
    Rahimi, S. M., Wang, X., & Far, B. (2017). Behavior-based location recommendation on location-based social networks. Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2017. https://doi.org/10.1007/978-3-319-57529-2_22
    Rigamonti, L., Estel, K., Gehlen, T., Wolfarth, B., Lawrence, J., Back, D. (2021). Use of artificial intelligence in sports medicine: a report of 5 fictional cases. BMC Sports Science, Medicine and Rehabilitation 13. https://doi.org/10.1186/s13102-021-00243-x
    Ryu, K., Han, H., & Kim, T. H. (2008). The relationships among overall quick-casual restaurant image, perceived value, customer satisfaction, and behavioral intentions. International Journal of Hospitality Management, 27(3), 459-469.
    Shareef, M., Dwivedi, Y., Kumar, V., & Kumar, U. (2017). Content design of advertisement for consumer exposure: Mobile marketing through short messaging service. International Journal of Information Management, 37, 257-268. https://doi.org/10.1016/j.ijinfomgt.2017.02.003
    Silva, F.A., Shojaei, A.S., Barbosa, B. (2023). Chatbot-Based Services: A Study on Customers’ Reuse Intention. Journal of Theoretical and Applied Electronic Commerce Research. 2023, 18, 457–474. http://doi.org/10.3390/jtaer18010024
    Sklar, A., & Derevensky, J. L. (2010). Way to play: Analyzing gambling ads for their appeal to underage youth. Canadian Journal of Communication, 35(4), 533. https://doi.org/10.22230/cjc.2010v35n4a2331
    Skolnick, J. H. (1978). House of cards: Legalization and control of casino gambling. Boston: Little Brown.
    Slater, S., & Narver, J. (1995). Market Orientation and Learning Organization. Journal of Marketing. https://doi.org/10.2307/1252120
    Sohn, K., & Kwon, O. (2020). Technology Acceptance Theories and Factors Influencing Artificial Intelligence-based Intelligent Products. Telematics and Informatics. 101324.
    Suh, B., & Han, I. (2002). Effect of trust on customer acceptance of Internet banking. Electronic Commerce Research and Applications, 1, 247-263. https://doi.org/10.1016/S1567-4223(02)00017-0
    Taylor, S., & Todd, P.A. (1995). Assessing IT Usage: The Role of Prior Experience. MIS Quarterly, 19, 561-570. http://doi.org/10.2307/249633
    Taylor, S., & Todd, P.A. (1995). Understanding Information Technology Usage: A Test of Competing Models. Information Systems Research, 6, 144-176. https://doi.org/10.1287/isre.6.2.144
    Thompson, R. L., Higgins, C. A., & Howell, J. M. (1991). Personal Computing: Toward a Conceptual Model of Utilization. MIS Quarterly, 15(1), 125–143. https://doi.org/10.2307/249443
    Tlili, A., Shehata, B., Adarkwah, M. A., Bozkurt, A., Hickey, D. T., Huang, R., & Agyemang, B. (2023). What if the devil is my guardian angel: ChatGPT as a case study of using chatbots in education. Smart Learning Environments, 10(1), 15. http://doi.org/10.1186/s40561-023-00237-x
    Ukpabi, D., & Karjaluoto, H. (2017). Consumers’ acceptance of information and communications technology in tourism: A review. Telematics and Informatics, 34. 618-644. https://doi.org/10.1016/j.tele.2016.12.002
    Valencia, A., Mugge, R., Schoormans, J., & Schifferstein, H. (2015). The Design of Smart Product-Service Systems (PSSs): An Exploration of Design Characteristics. International Journal of Design [Online] 9:1
    Van den Broeck, Evert & Zarouali, Brahim & Poels, Karolien. (2019). Chatbot Advertising Effectiveness: when does the message get through?. Computers in Human Behavior, 98. https://doi.org/10.1016/j.chb.2019.04.009
    Venkatesh, V., & Davis, F. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46, 186-204. https://doi.org/10.1287/mnsc.46.2.186.11926
    Venkatesh, V., & Morris, M., & Davis, G., & Davis, F. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27, 425-478. https://doi.org/10.2307/30036540
    Venkatesh, V., & Thong, J., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36, 157-178. https://doi.org/10.2307/41410412
    Wang, Z., Veličković, P., Hennes, D. et al. (2024). TacticAI: an AI assistant for football tactics. Nature Communications, 15, 1906. https://doi.org/10.1038/s41467-024-45965-x
    Washif J.A., Pagaduan J., James C., Dergaa I., & Beaven C.M. (2023). Artificial intelligence in sport: Exploring the potential of using ChatGPT in resistance training prescription. Biology of Sport, 2024, 41(2):209–220.
    Zeithaml ,V. A. (1988). Consumer Perceptions of Pries, and Value: A Means- End Model and Synthesis of Evidence. Journal of Marketing, 5, 2-22. https://doi.org/ 10.2307/1251446

    下載圖示
    QR CODE