簡易檢索 / 詳目顯示

研究生: 陳文乙
Chen, Wen-Yi
論文名稱: 以紫外光波段超短脈衝雷射於石墨烯薄膜式聚合酶鏈鎖反應晶片之研究
Study of Graphene Thin-Film-Based Device for Polymerase Chain Reaction Using Ultra-Violet Ultra-Short Pulsed Laser Irradiation
指導教授: 張天立
Chang, Tien-Li
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2017
畢業學年度: 104
語文別: 中文
論文頁數: 121
中文關鍵詞: 雷射製程聚合酶連鎖反應微型加熱器石墨烯DNA增生
英文關鍵詞: Laser micromachining, Polymerase chain reaction, Micro-heater, graphene, DNA amplification
DOI URL: https://doi.org/10.6345/NTNU202204440
論文種類: 學術論文
相關次數: 點閱:177下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用先進雷射微細製程技術(Advanced laser micromachining technique)於旋塗控制之石墨烯薄膜(Spin-coating graphene thin film)上,進行微型加熱器(Micro-heater)的製作。本研究藉由檢測其製作之元件電學特性與加熱特性,並利用程式控制與電路設計,以應用在設計與製作之聚合酶連鎖反應(Polymerase chain reaction, PCR)晶片,進行去氧核醣核酸(Deoxyribonucleic acid, DNA)之增幅。

    本研究結果發現製備的微型加熱器長度愈短,石墨烯電極通道寬度愈寬則電學特性愈佳,加熱特性也會愈好,即使用較少的能量就可以達到研究預期的溫度。為了在微型加熱器上安置一個小腔體(Chamber)來進行DNA的增生,本研究選用的設計長度為9 mm與寬度為1 mm之微型加熱器,並藉由LabView程式控制,以固態繼電器(Solid state relay, SSR)與設計脈衝寬度調變(Pulse width modulation, PWM)電路,達到單電壓源輸入及多電壓源輸出的控制。本研究可以真實被應用於PCR反應中的三段溫度控制中,其分別可穩定達到90-95 °C、50-55 °C與72-78 °C。透過以上的實驗參數調控,本研究進行DNA進行增生放大實驗,該實驗量測結果皆有放大特徵,並證明本研究製備之石墨烯微型加熱器,將能有機會實際應用在聚合酶連鎖反應晶片產品之設計與製作。

    In this study, the graphene-based micro-heater can be fabricated by the advanced laser micromachining and spinning-coating techniques for thin-film device. Based on electrical and thermal characteristics of graphene-based device, the control program and circuit design for developing polymerase chain reaction (PCR) chip can be performed to deoxyribonucleic acid(DNA) amplification.

    The results of this study found that the length of the shorter micro-heater and the width of wider graphene-based electrode channel where the heating characteristics indicate their better. That is to use of less energy can achieve the predicted temperature. In order to DNA amplification in the small chamber on the micro-heater device, the study is to use the design of micro-heater (length: 9 mm; width: 1 mm) with the LabView program control, the solid state relays (SSR) and pulse width modulation circuit to achieve the single voltage source input and multi-source voltage output. The study can be applied to practical PCR chip reaction with three step temperature control, including 90-95 °C, 50-55 °C and 72-78 °C. Through the experimental parameters control, this study can be done DNA amplification experiments. The measured results reveal the its amplification condition. It demonstrates that the graphene-based micro-heater device can be performed and will have the opportunity to develop the design and fabrication of practical PCR chip products.

    摘要 I Abstract II 致謝 III 符號表 IV 中英文縮寫對照 V 總目錄 VII 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1 研究背景與目的 1 1.2雷射簡介 2 1.3 微型加熱器簡介 3 1.4石墨烯材料簡介 3 第二章 文獻回顧 7 2.1 雷射原理及加工機制簡介 7 2.2 雷射電極製程 9 2.2.1 雷射直寫 9 2.2.2 雷射加工於石墨烯 12 2.3 石墨烯材料應用 13 2.4 微型加熱器應用 15 2.4.1 聚合酶連鎖反應 15 2.4.2 感測器應用 17 第三章 研究方法與設計 42 3.1 實驗設計 42 3.2 石墨烯試片製作 42 3.3 雷射圖案化定義 43 3.3.1 雷射加工剝離閥值 44 3.3.2 雷射加工之重疊率與脈衝數 45 3.3.3加熱器設計與製作 46 3.4 電性檢測分析 46 3.5 熱阻抗檢測分析 48 3.6 聚合酶連鎖反應 50 3.7 實驗與量測設備 50 第四章 研究結果與討論 59 4.1石墨烯薄膜分析 59 4.1.1石墨烯薄膜表面形貌分析 59 4.1.2石墨烯薄膜拉曼光譜 61 4.2圖案定義化量測 62 4.2.1雷射加工之剝離閥值 62 4.2.2雷射加工之重疊率與脈衝數 63 4.2.3微加熱器設計 64 4.3 電性與熱阻抗檢測分析 64 4.3.1電性與熱阻抗檢測分析 64 4.3.2 活化後電性與熱阻抗檢測分析 66 4.3.3 反饋系統之設計 69 4.4 聚合酶連鎖反應之應用 70 4.4.1 LabView程式與電路 70 4.4.2 改良LabView程式與電路 71 4.4.3 加入磷酸鹽水溶液之熱響應 71 4.4.4 隔水傳熱層之製備 72 4.4.5 聚合酶連鎖反應 72 4.4.6 聚合酶連鎖反應探討 73 第五章 結論與建議 111 5.1 結論 111 5.2 建議與未來展望 113 參考文獻 115

    [1] Biotechnology Market Analysis by Technology (Fermentation, Tissue Engineering, PCR Technology, Nanobiotechnology, Chromatography, DNA Sequencing, Cell-based Assay), By Application (Biopharmaceuticals, Bioservices, Bioagriculture, Bioindustry) And Segment Forecasts To 2020, September 2015, Grand view research
    [2] S. U. S. Chol, J. A. Eastman, "Enhancing thermal conductivity of fluids with nanoparticles." ASME-Publications-Fed Vol:231, pp. 99-106 (1995)
    [3] Y. S. Shin, K. Cho, S. H. Lim, S. Chung, S. J. Park, C. Chung, D. C. Han, J. K. Chang, “PDMS-based micro PCR chip with parylene coating”, Journal of Micromechanics and Microengineering, Vol:13, pp.768-774 (2003)
    [4] R. Fu, B. Xu, D. Li, “Study of the temperature field in microchannels of a PDMS chip with embedded local heater using temperature-dependent fluorescent dye”, International Journal of Thermal Sciences, Vol:45, pp.841-847 (2006)
    [5] N. G. Wilson, T. McCreedy, “On-chip catalysis using a lithographically fabricated glass microreactor the dehydration of alcohols using sulfated zirconia”, Chemical communications, Vol:9, pp.733-734 (2000)
    [6] A. R. Bhashyam, M. T. Wolf, A. L. Marcinkowski, A. Saville, K. Thomas, J. A. Carcillo, T.E. Corcoran, “Aerosol delivery through nasal cannulas: an in vitro study”, J Aerosol Med Pulm Drug Deliv, Vol:2008, pp. 181-188 (2008)
    [7] G. Tian, P. W. Longest, X. Li, M. Hindle, “Targeting Aerosol Deposition to and Within the Lung Airways Using Excipient Enhanced Growth”, J Aerosol Med Pulm Drug Deliv, Vol:2013, pp.248-265 (2013)
    [8] M. P. Casaletto, S. Kaciulis, G. Mattogno, L. Pandolfi, G. Scavia, L. Dori, S. Nicoletti, M. Severi, S. Zampolli, “Surface study of thin film gas sensors on a Si micro-machined substrate”, Applied Surface Science, Vol:189, pp.39-52 (2002)
    [9] Y. Mo, Y. Okawa, K. Inoue, K. Natukawa, “Low-voltage and low-power optimization of micro-heater and its on-chip drive circuitry for gas sensor array”, Sensors and Actuators A: Physical, Vol:100, pp.94-101 (2002)
    [10] U. Hoefer, G. Kühner, W. Schweizer, G. Sulz, K. Steiner, “CO and CO2 thin-film SnO2 gas sensors on Si substrates”, Sensors and Actuators B: Chemical, Vol:22, pp.115-119 (1994)
    [11] U. Dibbern, “A substrate for thin-film gas sensors in microelectronic technology”, Sensors and Actuators B: Chemical, Vol:2 pp.63-70 (1994)
    [12] Y. Mo, Y. Okawa, M. Tajima, T. Nakai, N. Yoshiike, K. Natukawa, “Micro-machined gas sensor array based on metal film micro-heater”, Sensors and Actuators B: Chemical, Vol:79, pp.175-181 (2001)
    [13] M. Aslam, C. Gregory, J. Hatfield, Polyimide membrane for micro-heated gas sensor array”, Sensors and Actuators B: Chemical, Vol:103, pp.153-157 (2004)
    [14] J.W. Gardner, A. Pike, N.F. de Rooij, M. Koudelka-Hep, P. A. Clerc, A. Hierlemann, W. Göpel, “Integrated array sensor for detecting organic solvents”, Sensors and Actuators B: Chemical, Vol:26, pp.135-139 (1995)
    [15] C. L. Dai, M. C. Liu, F. S. Chen, C. C. Wu, “A nanowire WO3 humidity sensor integrated with micro-heater and inverting amplifier circuit on chip manufactured using CMOS-MEMS technique”, Sensors and Actuators B: Chemical, Vol:123, pp.896-901 (2007)
    [16] C. L. Dai,“A capacitive humidity sensor integrated with micro heater and ring oscillator circuit fabricated by CMOS–MEMS technique”, Sensors and Actuators B: Chemical, Vol:122, pp.375-380 (2007)
    [17] V. Kohlschütter, P. Haenni,“Zur Kenntnis des Graphitischen Kohlenstoffs und der Graphitsäure”, Zeitschrift für anorganische und allgemeine Chemie, Vol:105, pp.121-144 (1919)
    [18] A. K. Geim, K. S. Novoselov, “The rise of graphene”, Nature materials, Vol:6, pp. 183-191 (2007)
    [19] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang , S.V. Dubonos , I.V.Grigorieva , A.A. Firsov, “ Electric field effect in atomically thin Carbon Films ”, Science, Vol. 306, pp. 666-669 (2004)
    [20] R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, “Fine structure constant defines visual transparency of graphene”. Science, Vol. 320, pp. 1308 (2008)
    [21] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, “Superior Thermal Conductivity of Single-Layer Graphene”. Nano letter, Vol. 8, pp. 902–907 (2008)
    [22] K. I. Bolotina, K.J. Sikes, Z. Jianga, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, “Ultrahigh electron mobility in suspended graphene”. Solid State Commun, Vol. 146, pp. 351-355 (2008)
    [23] C. Lee, X. Wei, J.W. Kysar, J. Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene”. Science, Vol. 321, pp. 385-388 (2008)
    [24] Laser Guide - CVI Melles Griot 2009 Technical Guide, Vol 2, pp.2-28 (2009)
    [25] M. Lackner, “Lasers in Chemistry: Probing and Influencing Matter”, Ch1. Principles of lasers, pp.3-32, September 2008, WILEY
    [26] H. Yoo, H. Shin, M. Lee, “Direct patterning of double-layered metal thin films by a pulsed Nd:YAG laser beam,” Thin Solid Films, Vol. 518, pp. 2775-2778 (2010)
    [27] H. Shin, B. Sim, M. Lee, “Laser-driven high-resolution patterning of indium tin oxide thin film for electronic device,” Opt. Lasers Eng., Vol. 48, pp. 816-820 (2010)
    [28] Y. Zhang, L. Guo, S. Wei, Y. He, H. Xia, Q. Chen, H.B. Sun, F.S Xiao,“Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction”. Nano Today, Vol. 5, pp. 15-20 (2010)
    [29] J. Tůma, O. Lyutakov, P. Šimek, V. Hnatowicz, V. Švorčík, “Well-ordered “tooth-shaped” silver-microstructures on poly(methyl methacrylate) patterned by laser writing ”, Materials Letters , Vol. 158, pp. 388-391 (2015)
    [30] J. B. In, B. Hsia, J. H. Yoo, S. Hyun, C. Carraro, R. Maboudian, C. P. Grigoropoulos, “Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide ”, Carbon, Vol. 89, pp. 144-151 (2015)
    [31] F. Zacharatos, M. Makrygianni, R. Geremia, E. Biver, D. Karnakis, S. Leyder, D. Puerto, P. Delaporte, I. Zergioti,“Laser Direct Write micro-fabrication of large area electronics onflexible substrates”, Applied Surface Science, Vol. 374, pp.177-123 (2016)
    [32] T. Delgado, D. Nieto, M. T. Flores-Arias,“Fabrication of microlens array sons soda-lime glass using a laser direct-write technique and thermal treatment assisted by a CO2 laser”, Optics and Lasers in Engineering , Vol. 73, pp. 1-6 (2015)
    [33] V. Kiisk, T. Kahro, J. Kozlova, L. Matisen, H. Alles, “Nanosecond lasertreatment of graphene”, Applied Surface Science, Vol. 276, pp. 133-137 (2013)
    [34] R. Arul, R. N. Oosterbeek, J. Robertson, G. Xu, J. Jin, M. C. Simpson,“The mechanism of direct laser writing of graphene features into graphene oxide films involves photoreduction and thermally assisted structural rearrangement”, Carbon, Vol. 99, pp. 423-431 (2016)
    [35] S. F. Tseng, W. T. Haiso, P. Y. Cheng, C. K. Chung, Y. S. Lin, S. C. Chien, W.Y. Huangd“Graphene-based chips fabricated by ultraviolet laser patterning for an electrochemical impedance spectroscopy”, Sensors and Actuators B: Chemical, Vol. 226, pp. 342-348 (2016)
    [36] J. E. An, Y. G. Jeong, “Structure and electric heating performance of graphene/epoxy composite films”, European Polymer Journal, Vol:49, pp. 1322-1330 (2013)
    [37] R. Sripada, V. B. Parambath, M. Baro, S. P. N. Nair, R. Sundara, “Platinum and platinumeiron alloy nanoparticles dispersed nitrogen-doped graphene as high performance room temperature hydrogen sensor”, International Journal of Hydrogen Energy, Vol:40, pp. 10346-10353 (2015)
    [38] A. R. Unnithan, C. H. Park, C. S. Kim, “Nanoengineered bioactive 3D composite scaffold: A unique combination of graphene oxide and nanotopography for tissue engineering applications”, Composites Part B, Vol:90, pp. 503-511 (2016)
    [39] J. N. Gavgania, A. Hasani, M. Nouri, M. Mahyari, A. Salehi, “Highly sensitive and flexible ammonia sensor based on S and Nco-doped graphene quantum dots/polyaniline hybrid at room temperature”, Sensors and Actuators B: Chemical, Vol:229, pp. 239-248 (2016)
    [40] S. Askari, R. Lotfi, A. Seifkordi, A.M. Rashidi, H. Koolivand, “A novel approach for energy and water conservation in wet cooling towers by using MWNTs and nanoporous graphene nanofluids”, Energy Conversion and Management, Vol:109, pp. 10-18 (2016)
    [41] T. B. Christensen, D. D. Bang, A. Wolff, “Multiplex polymerase chain reaction (PCR) on a SU-8 chip,” Microelectronic Engineering, Vol. 85, pp. 1278-1281 (2008)
    [42] D. Moschou, N. Vourdas, G. Kokkoris, G. Papadakis, J. Parthenios, S. Chatzandroulis, A. Tserepia, “All-plastic, low-power, disposable, continuous-flow PCR chip withintegrated microheaters for rapid DNA amplification,” Sensors and Actuators B: Chemical, Vol. 199, pp. 470–478 (2014)
    [43] X. Zhang, X. Yan, J. Chen, J. Zhao, “Large-size graphene microsheets as a protective layer for transparent conductive silver nanowire film heaters,” CARBON69, Vol. 69, pp. 437-442 (2014)
    [44] I. Byun, R. Ueno, B. Kim, “Micro-heaters embedded in PDMS fabricated using dry peel-off process,” Microelectronic Engineering, Vol. 121, pp. 1-4 (2014)
    [45] G. Liu, D.A. Lowy, A. Kahrim, C. Wang, Z. Dilli, N. Kratzmeier, W. Zhao, M. Peckerar, “A low cost micro-heater for aerosol generation applications”, Microelectronic Engineering, Vol:129 , pp. 46-52 (2014)
    [46] S. E. Moon, H. K. Lee, N. J. Choi, H. T. Kang, J. Lee, S. D. Ahn, S.Y. Kang, “Low power consumption micro C2H5OH gas sensor based on micro-heater and ink jetting technique”, Sensors and Actuators B: Chemical, Vol:217 , pp. 146-150 (2015)
    [47] K. Y. Dong, J.K. Choi, I. S. Hwang, J. W. Lee, B. H. Kang, D. J. Ham, J. H. Lee, B. K. won Ju, “Enhanced H2S sensing characteristics of Pt doped SnO2 nanofibers sensors with micro heater”, Sensors and Actuators B, Vol:157 , pp. 154-161 (2011)
    [48] G. Pal, A. Dutta, K. Mitra, M.S. Grace, A. Amat, T. B. Romanczyk, X.J. Wu, K. Chakrabarti, J. Anders, E. Gorman, R. W. Waynant, D. B. Tata, “Effect of low intensity laser interaction with human skin fibroblast cells using fiber-optic nano-probes”, J Photochem Photobiol B Vol:86, pp. 252-261 (2007)
    [49] W. Pacquentin, N. Caron, R. Oltra, “Nanosecond laser surface modification of AISI 304L stainless steel: Influence the beam overlap on pitting corrosion resistance”, Applied Surface Science, Vol. 288, pp. 34-39 (2014)
    [50] S. F. Tseng, W. T. Hsiao, K. C. Huang, D. Chiang, “The effect of laser patterning parameters on fluorine-doped tin oxide films deposited on glass substrates”, Applied Surface Science Vol:257, pp. 8813-8819 (2011)
    [51] T. L. Chang, Z. C. Chen, S. F. Tseng, “Laser micromachining of screen-printed graphene for forming electrode structures”, Applied Surface Science, Vol. 374, pp.305-311 (2016)
    [52] I. Byun, R. Ueno, B. Kim, “Micro-heaters embedded in PDMS fabricated using dry peel-off process,” Microelectronic Engineering, Vol. 121, pp. 1-4 (2014)
    [53] M. Grujicic, C. L. Zhao, E. C. Dusel, “The Effect of Thermal Contact Resistance on Heat Management in the Electronic Packaging”, Applied Surface Science, Vol:246, pp. 290-302 (2005)
    [54] J. Yan, Y. G. Jeong, “Highly elastic and transparent multiwalled carbon nanotube/polydimethylsiloxane bilayer films as electric heating materials”, Materials and Design, Vol. 86, pp. 72-79 (2015)

    下載圖示
    QR CODE