簡易檢索 / 詳目顯示

研究生: 李長青
Lee, Chang-Ching
論文名稱: 一維電漿光子晶體光電性質之研究
Analysis of Optical Properties in One-dimensional Plasma Photonic Crystals
指導教授: 吳謙讓
Wu, Chien-Jang
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 55
中文關鍵詞: 電漿光子晶體多通道濾波器
英文關鍵詞: plasma photonic crystals, multichannel transmission filter
論文種類: 學術論文
相關次數: 點閱:80下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們研究了在一維電漿光子晶體(Plasma Photonic Crystals , PPCs)的光學性質。這裡將涉及兩個主題。第一個主題是探討二元和三元電漿光子晶體的有效電漿頻率。有效電漿頻率的數值計算是基於光子能帶結構。我們將分析電子密度、介電層的厚度、電漿層的厚度做為有效電漿頻率的函數。我們也把結果與有效的介質理論做比較。在第二個主題中,我們考慮將頻率操作在低於電漿頻率的有限電漿光子晶體。我們發現,這種結構可用於多通道濾波器設計。通道數等於N-1個,其中N為週期數。這是在微波應用中使用的多通道。

    In this thesis, we study the optical properties in the one-dimensional plasma photonic crystals (PPCs). Two topics will be involved here. The first topic is to investigate the effective plasma frequency for the binary and ternary PPCs. The effective plasma frequency is extracted based on the calculated photonic band structure. We analyze the effective plasma frequency as a function of electron concentration, thickness of dielectric layer, and the thickness of plasma layer. We also compare the results with the effective medium theory. In the second topic, we consider the finite PPC operating at frequencies below the plasma frequency. We find that this structure can be used to design a multichannel transmission filter. The number of channels is equal to N-1, where N is number of periods. This multichannel channel is of use in the microwave applications.

    中文摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 第一章 導論 1 1-1前言 1 1-2光子晶體的歷史 1 1-3光子晶體的應用 3 1-4研究動機 3 1-5論文概述 3 參考文獻 4 第二章 計算方法 5 2-1轉移矩陣法(TMM)原理 5 2-1-1單層介質的動態矩陣 5 2-1-2單層轉移矩陣 8 2-1-3多層轉移矩陣 10 2-1-4反射率及透射率 12 2-1-5能帶結構 13 2-2電漿電磁波的性質 18 2-2-1電漿簡介 18 2-2-2電漿在無外加直流磁場作用 18 2-2-3電漿在外加直流磁場作用 19 第三章 一維電漿光子晶體的有效電漿頻率的研究 23 3-1導論 23 3-2基本方程 25 3-3數值結果與討論 28 3-3-1二元PPC的有效等離子體頻率 28 3-3-2三元PPC的有效電漿頻率 33 3-3-3有損耗的有效等離子體頻率 35 3-4結論 36 參考文獻 38 第四章 一維多通道電漿光子晶體的研究 41 4-1導論 41 4-2基本方程 42 4-3數值結果與討論 43 4-4結論 53 參考文獻 54 第五章 結論 55

    [1] J. W. Strutt and L. Rayleigh, Phil. Mag., S.5, 24, 145
    (1887).
    [2] S. John , Phys. Rev. Lett. Vol. 58, 2486 (1987)
    [3] E. Yablonovitch, Phys. Rev. Lett., Vol. 58, 2059 (1987)
    [4] J. D. Jounnaopoulos, R.D. Meade and J. N. Winn, Photonic
    Crystals-Molding theFlow of Light, (1995),
    http://ab-initio.mit.edu/book/
    [5] E.Chow, S.Y.Lin, J.R.Wendt, S.G..Johnson, and J.D.
    Joannopoulos, Opt. Lett.26, 286 (2001)
    [6] T.Yoshie,A. Scherer,H. Chen,D.Huffaker,and
    D.Deppe,Appl.Phys Lett.79,114 (2001)
    [7] H. Y. Ryu et al,appl. Phys. Lett, Vo1. 84,1067 (2004)
    [8] J. B. Pendry. Phys. Lett., Vo1. 85,3966 (2000)
    [9] Zhaolin Lu, Shouyuan Shi, Christopher A. Schuetz,Janusz
    A. Murakowski, and DennisW.Prather,Opt.
    Express,13,5592(2005)
    [10]Fink, Y., J. N. Winn, S. Fan, C. Chen, J. Michel, J. D.
    Joannopoulos, and L. E. Thomas, “A dielectric
    omnidirectional reflector,” Science, Vol. 282, 1679-
    1682, 1998.
    [11]Winn. J. N., Y. Fink, S. Fan, and J. D. Joannopoulos,
    “Omnidirectional reflection from a one-dimensional
    photonic crystal,” Optics Lett., Vol. 23, 1573-1575,
    1998.
    [12]Bloemera, M. J. and M. Scalora, “Transmissive properties
    of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett., Vol.
    72, 1676-1678, 1998.
    [13]Choi, Y.-K., Y.-K. Ha, J.-E. Kim, H. Y. Park, K. Kim,
    “Antireflection film in one-dimensional metallo-
    dielectric photonic crystals,” Optics Commun., Vol. 230,
    239-243, 2004.
    [14]Perze-Rodriguez, F., F. Diaz-Monge, N. M. Makarov, R.
    Marquez-Islas, and B. Flores-Desirena, “Spatial-
    dispersion effects in one-dimensional photonic crystals
    with metallic inclusion, “ MSWW 07 Symposium
    Proceedings, 92-97, 2007.
    [15]Soto-Puebla, D., M. Xiao, and F. Ramos-Mendieta,
    “Optical properties of a dielectric-metallic
    superlattice: the complex photonic bands,” Phys. Lett.
    A, Vol. 326, 273-280, 2004.
    [16]Bermann, O. L., Y. E. Lozovik, S. L. Eiderman, and R. D.
    Coalson, “Superconducting photonic crystals,” Phys. Rev.
    B, Vol. 74, 092505, 2006.
    [17]Takeda, H., K. Yoshino, “Tunable photonic band schemes
    in two-dimensional photonic crystals composed of copper
    oxide high-temperature superconductors,” Phys. Rev. B,
    Vol. 67, 245109, 2005.
    [18]Wu, C.-J., M.-S. Chen, and T.-J. Yang “Photonic band
    structure for a superconducting-dielectric
    superlattice,” Physica C, Vol. 432, 133-139, 2005
    [19]Lin, W.-H., C.-J. Wu, T.-J. Yang, and S.-J. Chang,
    “Terahertz multichanneled filter in a superconducting
    photonic crystal,” Optics Express, Vol. 18, 27155-27166,
    2010.
    [20]Van Duzer, T. and C. W. Turner, Principles of
    Superconductive Devices and Circuits, Edward Arnold,
    London, 1981.
    [21]Hojo, H. and A. Mase, “Dispersion relation of
    electromagnetic waves in one-dimensional plasma photonic
    crystals,” J. Plasma Fusion Res., Vol. 80, 89-90, 2004.
    [22]Hojo, H. and A. Mase, “Electromagnetic-wave
    transmittance characteristics in one-dimensional plasma
    photonic crystals,” J. Plasma Fusion Res., SERIES, Vol.
    8, 477-479, 2009.
    [23]Li, W., Y. Zhao, R. Cui, and H. Zhang, “Plasma photonic crystal,” Font. Optoelectron. China, Vol. 2, 103-107, 2009, and references therein.
    [24]Prasad, S., V. Singh, and A. K. Singh, “Dispersion
    characteristics and optimization of reflectivity of
    binary one-dimensional plasma photonic crystal having
    linearly graded material,” Progress In Electromagnetics
    Research M, Vol. 22, 149-162, 2012.
    [25]Manzanares-Martinez, J., “Analytic expression for the
    effective plasma frequency in one-dimensional metallic-
    dielectric photonic crystal,” Progress In
    Electromagnetics Research M, Vol. 13, 189-202, 2010.
    [26]Hung, H.-C, C.-J. Wu, T.-J. Yang, and S.-J. Chang,
    “Enhancement of near-infrared photonic band gap in a
    doped semiconductor photonic crystal," Progress In
    Electromagnetics Research, Vol. 125, 219-235, 2012.
    [27]Awasthi, S. K., U. Malaviya, and S. P. Ojha,
    “Enhancement of omnidirectional total-reflection
    wavelength range by using one-dimensional ternary
    photonic bandgap material," J. Opt. Soc. Am. B: Optical
    Physics, Vol. 23, 2566-2571, 2006.
    [28]Banerjee, A., “Enhanced refractometric optical sensing
    by using one-dimensional ternary photonic crystals,"
    Progress In Electromagnetics Research, Vol. 89, 11-22,
    2009.
    [29]Banerjee, A., "Enhanced incidence angle based spectrum
    tuning by using one-dimensional ternary photonic band
    gap structures," Journal of Electromagnetic Waves and
    Applications, Vol. 24, 1023-1032, 2010.
    [30]Wu, C.-J., Y.-H. Chung, B.-J. Syu, and T.-J. Yang,” Band
    gap extension in a one-dimensional ternary metal-
    dielectric photonic crystal,” Progress In
    Electromagnetics Research, Vol. 102, 81-93, 2010.
    [31]Dai, X. Y., Y. J. Xiang, and S. C. Wen, “Broad
    omnidirectional reflector in the one-dimensional ternary
    photonic crystals containing superconductor,” Progress
    In Electromagnetics Research, Vol. 120, 17-34, 2011.
    [32]Prasad, S., V. Singh, and S. K. Singh, “Modal
    propagation characteristics of EM waves in ternary one-
    dimensional plasma photonic crystals,” Optik, Vol. 121,
    1520-1528, 2010.
    [33]Morozov, G. V, F. Placido, and D. W. L. Sprung,
    “Absorptive photonic crystals in 1D”, J. Optics, Vol.
    13,035102, 2011.
    [34]Orfanidis, S. J., Electromagnetic Waves and Antennas,
    Ch. 7,Rutger University,2008, www.ece.rutgers.edu/
    orfanidi/ewa.
    [35]Smith, D. R., R. Dalichaouch, N. Kroll, S. Schultz, S.
    L. McCall,and P. M. Platzman,“Photonic band structure
    without and with defect in one-dimensional
    photonic crystal,”J. Opt. Soc. Am. B:Optical Physics,
    Vol. 10, 314–321, 1993.
    [36]Wu, C.-J. and Z.-H. Wang,“Properties of defect modes in
    one-dimensional photonic crystals,” Progress In
    Electromagnetics Research, Vol. 103, 169–184,2010.
    [37]Jiang, H.-T., H. Chen, N.-H. Liu, and S.-Y. Zhu,
    “Engineering photonic crystal impurity bands for
    multiple channeled optical switches,” Chin. Phys. Lett.,
    Vol.21, 101–103, 2004.
    [38]Zhang, Y. and B.-Y. Gu, “Aperiodic photonic quantum-well
    structures for multichanneled filtering at arbitrary
    preassigned frequencies,” Optics Express,
    Vol. 12, 5910–5915, 2004.
    [39]Liu, J., J. Sun, C. Huang, W. Hu, and M. Chen,
    “Improvement of spectral efficiency based on spectral
    splitting in photonic quantum-well structures,” IET
    Optoelectron., Vol. 2, 122–127,2008.
    [40]Liu, J., J. Sun, C. Huang, W. Hu, and D.
    Huang,“Optimizing the spectral efficiency of photonic
    quantum well structures,”Optik,Vol. 120, 35–39, 2009.

    無法下載圖示 本全文未授權公開
    QR CODE