研究生: |
余思汶 Yu, Szu-Wen |
---|---|
論文名稱: |
副食品添加及飲食營養對兒童至八歲生長發展之出生世代研究分析 A birth cohort study of complementary foods and nutrition on growth development until 8 years old |
指導教授: | 盧立卿 |
學位類別: |
碩士 Master |
系所名稱: |
人類發展與家庭學系 Department of Human Development and Family Studies |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 218 |
中文關鍵詞: | 世代研究 、嬰兒與兒童 、副食品 、營養素攝取 、體位 、生長速度 |
英文關鍵詞: | cohort study, infants and children, complementary food, nutrient intake, anthropometric measurement, growth velocity |
DOI URL: | http://doi.org/10.6345/NTNU202000869 |
論文種類: | 學術論文 |
相關次數: | 點閱:369 下載:50 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
副食品又稱為「離乳食品」,是指在斷奶前的這段過渡期間,除了母奶或配方奶粉的主食之外,另外添加的食品。世界衛生組織建議應以純母乳哺育至6個月後為目標,再開始添加副食品。而台灣兒科醫學會以及歐洲國家皆建議4-6個月可以開始給予副食品,並認為及時添加副食品可解決或降低易缺乏營養素的狀況發生。國內針對副食品營養攝取狀況與兒童成長發展之研究資料相當欠缺,為了提供國內學術研究更深入的發展,應該有更多台灣本土化的資料來奠定基礎。
本研究為出生世代研究,探討台灣兒童自4個月起添加副食品至8歲生長發展情形。三世代研究對象 (n=495) 分別招募自臺北市立聯合醫院婦幼院區與臺大醫院、臺中市中山醫學大學附設醫院及高雄市義大醫院的婦產科門診。嬰兒每月、兒童每年定期利用電話訪談、郵寄及電子郵件等方式收集24小時飲食回憶及體位等資料,持續追蹤至8歲。並以性別、副食品添加時機作為飲食及體位變化之主要假說,而出生體重、哺餵方式為次要假說。本研究之資料利用統計軟體SPSS 23.0進行分析。
研究結果顯示,分析兒童0-8歲體重、身高、BMI及生長速度 (體重/身高增加量),皆落於國內外生長曲線正常範圍之間。於嬰兒1歲時,配方奶哺餵之嬰兒在體重及身高顯著高於母乳哺餵者 (p<0.05)。0-8歲不同年齡層的平均體重在性別上並無顯著差異。出生體重最低的組別其母親孕前體重及BMI顯著低於其餘四組 (p<0.05)。雙親之身高皆與兒童0-8歲生長速度達顯著正相關 (體重增加量:r父身高= 0.183,r母身高= 0.201,p<0.05;身高增加量:r父身高= 0.241,r母身高= 0.227,p<0.05)。8歲兒童1/4有過重及肥胖的問題 (過重19.2%,肥胖7.9%)。
在整日營養素部分,不論男女生之平均熱量攝取量皆略低於建議量。6個月的蛋白質男女生攝取量低於建議量,但12個月及6歲的男女生攝取量高於建議量。碳水化合物在6個月、12個月及6歲的攝取量皆高於建議量。探討長期營養素攝取狀況,兒童6個月至6歲顯示熱量、蛋白質百分比、動物性蛋白質、脂質、碳水化合物與其百分比、菸鹼酸、維生素B12、葉酸、鉀、鈣、磷之攝取量隨著年齡增長而顯著上升 (p for trend<0.05);而脂質百分比、維生素A與維生素E之攝取量隨著年齡增加而顯著下降 (p for trend<0.05)。整日蛋白質百分比與1歲及8歲體重呈顯著負相關 (r1歲= -0.500,r8歲= -0.496)。若探討生長速度,可得知整日每公斤體重熱量及碳水化合物與0-8歲身高增加量呈現顯著負相關 (r每公斤體重熱量= -0.138,r每公斤體重碳水化合物= -0.126)。
於副食品方面,可知1歲嬰兒由副食品攝取之熱量尚未超過總熱量的一半 (47%),其餘熱量 (53%) 由母乳、配方奶或極少量的乳品類供應,可見1歲時仍是以奶類為熱量攝取之主要來源。4-12個月副食品營養素攝取狀況,總蛋白質、植物性蛋白質、維生素A、維生素B1、鉀及鎂之攝取量隨著月齡上升而顯著增加 (p for trend:總蛋白質= 0.040、植物性蛋白質= 0.002、維生素A= 0.019、維生素B1= 0.041、鉀= 0.017、鎂= 0.001)。4-12個月副食品攝取百分比在熱量與三大營養素、維生素B1、菸鹼酸、葉酸、鈉、磷、鐵、鋅隨著月齡增加而升高。副食品之全榖雜糧類及其中的精製米類、未精製麥類、根莖雜糧類,蔬菜類及其中的深色蔬菜類,以及水果類皆與1歲及2歲的體重達顯著正相關 (全榖雜糧類:r1歲= 0.237,r2歲= 0.347;蔬菜類:r1歲= 0.213,r2歲= 0.273;水果類:r1歲= 0.206,r2歲= 0.236)。4-12個月副食品之熱量(r= 0.813)、總蛋白質 (r= 0.739)、植物性蛋白質 (r= 0.902)、碳水化合物 (r= 0.916)、鈉 (r= 0.716) 及鎂 (r= 0.770) 攝取量與副食品全榖雜糧類攝取量呈顯著正相關。維生素A (r= 0.711)、維生素K (r= 0.849)、維生素B1 (r= 0.750)、葉酸 (r= 0.706) 及鉀 (r= 0.708) 與蔬菜類呈顯著正相關性;維生素C (r= 0.702) 與水果類呈顯著正相關;脂質 (r= 0.774) 攝取與豆魚蛋肉類呈顯著正相關;動物性蛋白質 (r= 0.686)、脂質 (r= 0.863)及維生素B12 (r=0.804) 與油脂類呈顯著正相關;維生素B1 (r= 0.759)、維生素B2 (r= 0.871)、菸鹼酸 (r= 0.867)、維生素B6 (r= 0.963)、鈣 (r= 0.927)、磷 (r= 0.697)及鐵 (r= 0.804) 與餅乾零食類呈顯著正相關。
而兒童6歲熱量、蛋白質、植物性蛋白質攝取量與6歲及8歲的體重、身高分別呈顯著正相關 (r6歲體重= 0.235~0.303,r6歲身高= 0.234~0.254,r8歲體重= 0.193~0.223,r8歲身高= 0.184~0.218);相反地,每公斤體重之熱量、蛋白質、脂質、碳水化合物與6歲及8歲體重、身高分別呈顯著負相關 (r6歲體重= -0.294~-0.437,r6歲身高= -0.196~-0.312,r8歲體重= -0.242~-0.391,r8歲身高= -0.249~-0.337)。
綜合以上,家庭遺傳或許會影響體位與生長速度之因素,但經由充足的副食品攝取,同時配合豐富的兒童營養素攝取,有助於嬰兒及兒童之生長發展,並降低往後生活中疾病的風險。
Complementary foods (CFs) are also known as "weaning food", which refers to foods added during the transition period before weaning besides the main food of breast or formula milk. The World Health Organization (WHO) recommends that the infants should be breastfeed exclusively until 6 months before adding complementary foods. In addition, the Taiwan Pediatric Association (TPA) and European Union (EU) have recommend that complementary foods could be added to the infants within 4-6 months. Adding complementary foods in time can improve or reduce the occurrence of nutrient deficiency. Domestic cohort studies of complementary foods and nutrition on growth development of children from Taiwan are quite insufficient.
This study is a birth cohort study that explores complementary foods and nutrition on growth development until 8 years old. The subjects (n=495) of the three cohorts were recruited from the departments of Obstetrics & Gynecology of Taipei City Hospital, National Taiwan University Hospital, Chung Shan Medical University Hospital, and E-Da Hospital. The data of anthropometric measurements and diet (by 24-hour dietary recall) was collected through telephone interviews and mailing per month of infants and per year of children, and it was tracked until 8 years old. The first hypotheses were the timing by adding complementary foods and gender differences. The secondary hypotheses were different birth weight and feeding methods. In this study, software SPSS 23.0 was used for statistical analysis of the data from 0 to 8 years of children.
The results of the study showed that body weight, height, BMI and growth velocity (weight/height gain) from 0-8 years old were within the normal range of domestic and foreign growth curves. At the age of 1 year old, the body weight and height of infants who were fed form formula were significantly higher than those fed from breast milk (p<0.05). There was no significant difference in the average weight of different age groups. For the lowest group of birth weight, their mothers’ weight and BMI before pregnancy were significantly lower than those of the four remaining groups (p<0.05). The height of both parents had significantly positive correlation with growth velocity of children from 0-8 years old (weight gain: r father height=0.183, r mother height=0.201, p<0.05; height gain: r father height=0.241, r mother height= 0.227, p<0.05). One quarter of 8-year-old children were overweight and obesity (19.2% overweight, 7.9% obesity).
The daily calorie intake for boys and girls was slightly lower than the value of Dietary Reference Intakes (DRIs). The daily protein intake for male and female infants at 6 months was lower than DRIs, but the daily protein intake for children at 12 months and 6 years old was higher than DRIs. The daily carbohydrate intake at 6 months, 12 months and 6 years old was higher than DRIs. The results showed the intakes of calorie, carbohydrate, animal protein, fat, niacin, vitamin B12, folic acid, potassium, calcium, phosphorus, and the percentage of energy from protein and carbohydrate were significantly increased with age from 6 months to 6 years old (p for trend<0.05). However, the intakes of vitamin A and vitamin E, and the percentage of energy from fat were significantly decreased with age (p for trend<0.05). The daily percentage of energy from protein had significantly negative correlation with body weight at 1 and 8 years old (r1 year old = -0.500, r8 years old = -0.496). For growth velocity, the daily calorie and carbohydrate per kilogram of body weight had significantly negative correlation with the increase in height from 0-8 years old (r calorie kcal/kg= -0.138, r carbohydrate g/kg = -0.126).
The calorie intake of complementary foods for infants at 1 year old was not higher half of the total calorie (47%), and the remaining calorie (53%) was supplied by breast milk, formula milk, and a little intake of dairy. At 1 year old, milk was the main source of calorie. For the nutrient intakes of complementary foods at 4-12 months, the total protein, plant protein, vitamin A, vitamin B1, potassium and magnesium intake were significantly increased with age (p for trend for total protein = 0.040, plant protein= 0.002, vitamin A= 0.019, vitamin B1= 0.041, potassium= 0.017, magnesium= 0.001). The percentage of vitamin B1, niacin, folic acid, sodium, phosphorus, iron, zinc, and the percentage of energy from calorie, protein fat and carbohydrate of complementary foods were increased with age. For food groups of complementary foods, the whole grain group (including refined rice, unrefined wheat, and rhizomes), the vegetable group (including dark vegetable) and the fruit group all had significantly positive correlation with the body weight at 1 and 2 years old (the whole grain group: r1 year old= 0.237, r2 years old= 0.347; the vegetable group: r1 year old= 0.213, r2 years old= 0.273; the fruit group: r1 year old= 0.206, r2 years old= 0.236). The intakes of calorie (r= 0.813), protein (r= 0.739), plant protein (r= 0.902), carbohydrate (r= 0.916), sodium (r= 0.716), magnesium (r= 0.770) of complementary foods had significantly positive correlation with the whole gran group of complementary foods. The intakes of vitamin A (r= 0.711), vitamin K (r= 0.849), vitamin B1 (r= 0.750), folic acid (r= 0.706) and potassium (r= 0.708) of complementary foods had significantly positive correlation with vegetable group of complementary foods. The complementary food intake of vitamin C (r= 0.702) had significantly positive correlation with the fruit group of complementary foods. The complementary food intake of fat (r= 0.774) had significantly positive correlation with the beans, fish, eggs and meat group of complementary foods. The intakes of animal protein (r= 0.686), fat (r= 0.863) and vitamin B12 (r= 0.804) of complementary foods had significantly positive correlation with oil group of complementary foods. The intakes of vitamin B1 (r= 0.759), Vitamin B2 (r= 0.871), niacin (r= 0.867), vitamin B6 (r= 0.963), calcium (r= 0.927), phosphorus (r= 0.697) and iron (r= 0.804) of complementary foods had significantly positive correlation with the biscuit and snacks group of complementary foods.
The intakes of calorie, protein, and plant protein of children at 6 years old had significantly positive correlation with the weight and height of 6 and 8 years old (r6-year-old weight= 0.235~0.303, r6-year-old height= 0.234~0.254, r8-year-old weight= 0.193 ~0.223, r8-year-old height= 0.184~0.218). On the contrary, the intakes of calorie, protein, fat, carbohydrate per kilogram of body weight had significantly negative correlation with the weight and height of 6 and 8 years old (r6-year-old weight= -0.294~-0.437, r6-year-old height= -0.196~-0.312, r8-year-old weight= -0.242 ~ -0.391, r8-year-old height= -0.249 ~ -0.337).
Based on the above results, family inheritance may be the affect factors of anthropometric measurements and growth velocity. However, adequate intake of complementary foods and abundant nutrient intakes for children will help the growth development of infants and children and reduce the risk of diseases in later life.
一、中文文獻
中華人民共和國國家衛生和計畫生育委員會 (2013)。中華人民共和國衛生行業標準:成人體重判定。北京:中國標準出版社。
中華人民共和國國家衛生健康委員會 (2018)。中國居民膳食營養素參考攝取量。取自http://webcache.googleusercontent.com/search?q=cache:http://www.gxcdc.com/uploadfile/2018/0709/20180709041508867.pdf
中國居民膳食指南 (2015)。7-24月齡嬰兒餵養指南。取自http://dg.cnsoc.org/article/04/8a2389fd5520b4f30155a5d4d78621c4.html
江忻蓉 (民101)。分析嬰兒哺餵方式及飲食攝取與體型發展之前瞻性研究 (未出版碩士論文)。國立臺灣師範大學,台北市。
吳佩芯 (民101)。臺灣嬰兒體位與營養狀況之探討。輔仁大學碩士論文。
李生慧、沈曉明、金星明 (2009)。上海市學齡兒童電視和電腦使用對睡眠行為的影響。上海交通大學學報 (醫學版)。29(7),763。
李輝、張亞欽、朱宗涵 (2009)。1975-2005年中國7歲以下兒童體格發育變化趨勢。中華預防醫學雜誌,43(3),182-186。
邵婷、陶慧慧、倪玲玲、孫艷麗、嚴雙琴、顧春麗、…、陶芳標 (2016)。 母親孕前BMI和孕期增重對學齡前兒童超重肥胖的影響。中華預防醫學雜誌,50(2),123-128。
厚生勞動省 (2015)。日本人的食事攝取基準之概要(日文)。取自https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/kenkou/eiyou/syokuji_kijyun.html
林佳蓉、曾明淑、高美丁、潘文涵 (民107)。台灣地區嬰兒副食品餵食狀況的變遷:1997-1999至2005-2008。取自https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=1768&pid=9979
陳建仁 (民88)。流行病學:原理與方法。台北市:聯經出版社。
陳姿媛 (民101)。追蹤不同出生體重兒童至四歲之生長狀況及飲食營養研究 (未出版碩士論文)。國立臺灣師範大學,台北市。
陳姿媛、盧立卿 (民101)。國際間學齡前兒童生長體位標準之現況分析。台灣公共衛生雜誌,31(2),105-118。
陳慧儀 (民102)。飲食動植物性蛋白質與礦物質來源對兒童生長發展之相關研究 (未出版碩士論文)。國立臺灣師範大學,台北市。
陳韻伶、徐桂婷、盧立卿 (民107)。長期追蹤研究台灣幼童飲食攝取與生長速度。台灣公共衛生雜誌,37(6), 626-637。
葉庭吉、李婉萍、鍾碧芳 (民107)。嬰兒健康飲食:完整收錄寶寶飲食問題與解答,150道營養食譜全公開。新北市:康鑑文化出版社。
衛生福利部國民健康署 (民96)。臺灣出生世代研究長期追蹤調查。
取自https://www.hpa.gov.tw/Pages/List.aspx?nodeid=110
衛生福利部國民健康署 (民102)。國人膳食營養素參考攝取量。取自https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=544&pid=725
衛生福利部國民健康署 (民103)。兒童健康手冊。取自https://www.hpa.gov.tw/Pages/EBook.aspx?nodeid=1139
衛生福利部國民健康署 (民107)。母乳哺餵手冊。取自https://www.hpa.gov.tw/Pages/EBook.aspx?nodeid=1586
衛生福利部國民健康署 (民107)。兒童期營養參考手冊。取自https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=485&pid=8340
衛生福利部國民健康署 (民107)。嬰兒期營養參考手冊。取自https://ealth99.hpa.gov.tw/educZone/edu_detail.aspx?CatId=21988&kw=
衛生福利部國民健康署。民102-105年國民營養健康狀況變遷調查。取自https://www.hpa.gov.tw/Cms/File/Attach/6201/File_12811.pdf
盧立卿、李芳靚、陳秀瑩、方麗容、江忻蓉 (民100)。台灣母乳哺餵嬰兒一至十二個月秤重試驗及營養素攝取量之研究。臺灣營養學會雜誌,36(3),87-98。
薛宇慧 (民104)。不同出生體重兒童至八歲生長發展與飲食營養之研究 (未出版碩士論文)。國立臺灣師範大學,台北市。
蘇郁芬、盧立卿、林家慧、謝武勳、方麗容 (民98)。評估台灣嬰兒六個月前母乳攝取量及營養狀態之研究。臺灣營養學會雜誌,34(1),11-21。
二、英文文獻
British Nutrition Foundation. (2016). Nutrition Requirements. Retrieved from https://www.nutrition.org.uk/attachments/article/234/Nutrition%20Requirements_Revised%20Oct%202016.pdf
Bozzola, M., & Meazza, C. (2012). Growth velocity curves: what they are and how to use them. In Handbook of growth and growth monitoring in health and disease (pp. 2999-3011). Springer, New York, NY.
Brown, J. E. (2017). Nutrition through the life cycle. Cengage Learning, Boston, Massachusetts.
Carson, V., Tremblay, M. S., Chaput, J. P., & Chastin, S. F. (2016). Associations between sleep duration, sedentary time, physical activity, and health indicators among Canadian children and youth using compositional analyses. Applied Physiology, Nutrition, and Metabolism, 41(6), S294-S302.
Campbell, K. J., Crawford, D. A., & Ball, K. (2006). Family food environment and dietary behaviors likely to promote fatness in 5–6 year-old children. International journal of obesity, 30(8), 1272-80.
Chen, W., & Chang, M. H. (2010). New growth charts for Taiwanese children and adolescents based on World Health Organization standards and health-related physical fitness. Pediatrics & Neonatology, 51(2), 69-79.
DRI. (2005). Institute of Medicine, Food and Nutrition Board, Dietary Reference Intakes: energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids.
Emmett, P. M., & Jones, L. R. (2015). Diet, growth, and obesity development throughout childhood in the Avon Longitudinal Study of Parents and Children. Nutrition reviews, 73(suppl_3), 175-206.
Friel, J. K., Hanning, R. M., Isaak, C. A., Prowse, D., & Miller, A. C. (2010). Canadian infants' nutrient intakes from complementary foods during the first year of life. BMC pediatrics, 10(1), 43.
Grote, V., & Theurich, M. (2014). Complementary feeding and obesity risk. Current Opinion in Clinical Nutrition & Metabolic Care, 17(3), 273-277.
Grote, V., Theurich, M., Luque, V., Gruszfeld, D., Verduci, E., Xhonneux, A., & Koletzko, B. (2018). Complementary feeding, infant growth, and obesity risk: timing, composition, and mode of feeding. In Recent Research in Nutrition and Growth (Vol. 89, pp. 93-103). Karger Publishers.
Hsieh, T. T., Hsu, J. J., Chen, C. J., Chiu, T. H., Liou, J. D., Hsieh, C. C., ... & Soong, Y. K. (1991). Analysis of birth weight and gestational age in Taiwan. Journal of the Formosan Medical Association, 90(4), 382-387.
Hsieh, W. S., Wu, H. C., Jeng, S. F., Liao, H. F., Su, Y. N., Lin, S. J., Hsieh, C. J., Chen, P. C. (2006). Nationwide singleton birth weight percentiles by gestational age in Taiwan, 1998-2002. Acta Paediatr Taiwan, 47(1), 25-33.
Huh, S. Y., Rifas-Shiman, S. L., Taveras, E. M., Oken, E., & Gillman, M. W. (2011). Timing of solid food introduction and risk of obesity in preschool-aged children. Pediatrics, 127(3), e544-e551.
James K, F., Corinne A, I., Rhona, H., & Angela, M. (2009). Complementary food consumption of Canadian infants. The Open Nutrition Journal, 3(1).
Johnson, J., Clifton, R. G., Roberts, J. M., Myatt, L., Hauth, J. C., Spong, C. Y., ... & Peaceman, A. M. (2013). Pregnancy outcomes with weight gain above or below the 2009 Institute of Medicine guidelines. Obstetrics and gynecology, 121(5), 969.
Kuczmarski, R. J. (2002). 2000 CDC growth charts for the United States; methods and development.
Leung, S. S. F., Chan, S. M., Lui, S., Lee, W. T. K., & Davies, D. P. (2000). Growth and nutrition of Hong Kong children aged 0–7 years. Journal of paediatrics and child health, 36(1), 56-65.
Lim, S. X., Toh, J. Y., Van Lee, L., Han, W. M., Shek, L. P. C., Tan, K. H., ... & Chong, M. F. F. (2018). Food sources of energy and macronutrient intakes among infants from 6 to 12 months of age: the Growing Up in Singapore Towards Healthy Outcomes (GUSTO) Study. International journal of environmental research and public health, 15(3), 488.
Ministry of Health. (2004). Recommended Dietary Allowances for Normal Healthy Persons in Singapore. Retrieved from https://www.healthhub.sg/live-healthy/192/recommended_dietary_allowances
Nappo, A., Sparano, S., Intemann, T., Kourides, Y. A., Lissner, L., Molnar, D., ... & Wolters, M. (2019). Dietary calcium intake and adiposity in children and adolescents: Cross-sectional and longitudinal results from IDEFICS/I. Family cohort. Nutrition, Metabolism and Cardiovascular Diseases, 29(5), 440-449.
National Academy of Sciences. (2019). Dietary Reference Intakes Tables and Application. Retrieved from http://nationalacademies.org/hmd/Activities/Nutrition/SummaryDRIs/DRI-Tables.aspx
Nead, K. G., Halterman, J. S., Kaczorowski, J. M., Auinger, P., & Weitzman, M. (2004). Overweight children and adolescents: a risk group for iron deficiency. Pediatrics, 114(1), 104-108.
Netting, M. J., & Makrides, M. (2017). Complementary foods: guidelines and practices. In Complementary feeding: building the foundations for a healthy life (Vol. 87, pp. 1-12).
Obbagy, J. E., English, L. K., Psota, T. L., Wong, Y. P., Butte, N. F., Dewey, K. G., ... & Stoody, E. E. (2019). Complementary feeding and micronutrient status: a systematic review. The American journal of clinical nutrition, 109(Supplement_1), 852S-871S.
Papoutsou, S., Savva, S. C., Hunsberger, M., Jilani, H., Michels, N., Ahrens, W., ... & Moreno, L. A. (2018). Timing of solid food introduction and association with later childhood overweight and obesity: The IDEFICS study. Maternal & child nutrition, 14(1), e12471.
Pearce, J., & Langley-Evans, S. C. (2013). The types of food introduced during complementary feeding and risk of childhood obesity: a systematic review. International journal of obesity, 37(4), 477-485.
Pem, D. (2015). Factors Affecting Early Childhood Growth and Development: Golden 1000 Days”. Adv Practice Nurs, 1(101), 2573-0347.
Pinhas-Hamiel, O., Newfield, R. S., Koren, I., Agmon, A., Lilos, P., & Phillip, M. (2003). Greater prevalence of iron deficiency in overweight and obese children and adolescents. International journal of obesity, 27(3), 416.
Royal College of Paediatrics and Child Health. (2013). UK-WHO growth charts - 0-4 years. Retrieved from https://www.rcpch.ac.uk/resources/uk-who-growth-charts-0-4-years
Rolland-Cachera, M. F., Deheeger, M., Akrout, M., & Bellisle, F. (1995). Influence of macronutrients on adiposity development: a follow up study of nutrition and growth from 10 months to 8 years of age. International journal of obesity and related metabolic disorders: journal of the International Association for the Study of Obesity, 19(8), 573-578.
Skinner, J. D., Bounds, W., Carruth, B. R., Morris, M., & Ziegler, P. (2004). Predictors of children's body mass index: a longitudinal study of diet and growth in children aged 2-8 y. [Research Support, Non-U.S. Gov't]. Int J Obes Relat Metab Disord, 28(4), 476-482. doi: 10.1038/sj.ijo.0802405
Tao, F. B., Hao, J. H., Huang, K., Su, P. Y., Cheng, D. J., Xing, X. Y., ... & Tong, S. L. (2012). Cohort profile: the China-Anhui birth cohort study. International journal of epidemiology, 42(3), 709-721.
The Equal Employment, Children and Families Bureau, Ministry of Health, Labour and Welfare (Japan). A survey of infant body development in 2010. Retrieved from https://www.mhlw.go.jp/stf/shingi/2r9852000001tmct-att/2r9852000001tmea.pdf
United Nations Children's Fund. (1990). Convention on the Rights of the Child. Retrieved from https://www.unicef.org.uk/what-we-do/un-convention-child-rights/
Wadsworth, M. E. J. (2005). Birth Cohort Studies. Retrieved from https://onlinelibrary.wiley.com/doi/full/10.1002/0470011815.b2a02002
White, J. M., Bégin, F., Kumapley, R., Murray, C., & Krasevec, J. (2017). Complementary feeding practices: Current global and regional estimates. Maternal & child nutrition, 13, e12505.
World Health Organization. (1997). WHO Global Database on Child Growth and Malnutrition. Retrieved from https://www.who.int/nutgrowthdb/en/
World Health Organization. (2005). Complementary feeding. Retrieved from https://www.who.int/nutrition/topics/complementary_feeding/en/
World Health Organization. (2006). The WHO Child Growth Standards. Retrieved from https://www.who.int/childgrowth/en/