研究生: |
賴又竹 Lai, Yu-Chu |
---|---|
論文名稱: |
AI客服還是真人客服? 服務失誤歸因與客服種類對服務恢復滿意度的影響:整合社會批判、社會支持與社會交換的理論觀點 AI or Human Customer Service? the Impact of Failure Attribution and Customer Service Type on Recovery Satisfaction: Integrating the Perspectives of Social Judgement, Social Support, and Social Exchange Theories |
指導教授: |
洪秀瑜
Hung, Hsiu-Yu |
口試委員: |
洪秀瑜
Hung, Hsiu-Yu 蔡顯童 Tsai, Hsien-Tung 陳彥鈞 Chen, Yen-Chun |
口試日期: | 2024/05/27 |
學位類別: |
碩士 Master |
系所名稱: |
管理研究所 Graduate Institute of Management |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 62 |
中文關鍵詞: | 服務失敗 、服務恢復 、歸因理論 、人工智慧 |
英文關鍵詞: | service failure, service recovery, attribution theory, artificial intelligence |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202401216 |
論文種類: | 學術論文 |
相關次數: | 點閱:157 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討服務失敗歸因(內部歸因或外部歸因)及客服種類(真人客服或人工智慧客服)對服務恢復滿意度的影響;並透過2 x 2的因子設計進行實驗,分析社會批判、社會支持與社會交換三個中介變量,在上述不同情境下如何作用。
研究結果顯示,在內部歸因(消費者自身錯誤)情境下,消費者更傾向於選擇AI客服,以降低社會批判壓力,然而社會批判感知與服務恢復滿意度存在負相關;而在外部歸因(公司錯誤)情境下,消費者更傾向於選擇真人客服,以滿足社會支持需求,社會支持感知與服務恢復滿意度存在正相關。此外,社會交換理論顯示,在內部歸因情境下,消費者更傾向於選擇真人客服,以滿足社會交換預期(更多的交涉空間);而在外部歸因的情境下,社會交換對付物恢復滿意度則無顯著影響。
本研究的理論貢獻在於揭示了社會心理因素在服務恢復過程中的關鍵作用,實務意涵則在於提供企業如何在不同情境下靈活運用AI客服與真人客服,以提升服務恢復策略的有效性。
綜上所述,本研究不僅豐富了服務管理領域的理論基礎,也為企業在面對服務失敗時的恢復策略提供了實踐指導,期望能夠為提升消費者滿意度和企業競爭力提供助益。
This study aims to investigate the effects of service failure attribution (internal attribution or external attribution) and customer service type (live customer service or AI customer service) on service recovery satisfaction; and conducts experiments through a 2 x 2 factorial design to analyze how the three mediating variables, namely, social criticism, social support, and social exchange, work in the above mentioned different contexts.
The results show that under internal attribution (consumers' own mistakes), consumers prefer AI customer service to reduce the pressure of social criticism, however, there is a negative correlation between the perception of social criticism and service recovery satisfaction; while under external attribution (company's mistakes), consumers prefer real human customer service to satisfy the need for social support, and there is a positive correlation between the perception of social support and service recovery satisfaction. Perceived social support is positively related to satisfaction with service recovery. In addition, social exchange theory shows that in the internal attribution context, consumers are more likely to choose a live customer service agent to fulfill the social exchange expectation (more room for negotiation), while in the external attribution context, social exchange has no significant effect on payment recovery satisfaction.
The theoretical contribution of this study is to reveal the key role of psychosocial factors in the service recovery process, and the practical implication is to provide a flexible way for enterprises to utilize AI customer service and live customer service to enhance the effectiveness of their service recovery strategies in different contexts.
In summary, this study not only enriches the theoretical foundation of the service management field, but also provides practical guidance for the recovery strategy of enterprises in the face of service failure, which is expected to help enhance consumer satisfaction and enterprise competitiveness.
Abu Bakar, S. Z. (2019). Examining E-Satisfaction After Service Recovery.
Ab Hamid, M. R., Sami, W., & Sidek, M. M. (2017). Discriminant validity assessment: Use of Fornell & Larcker criterion versus HTMT criterion. Journal of Physics: Conference Series, 890(1), 012163. IOP Publishing.
Acquisti, A., Brandimarte, L., & Loewenstein, G. (2015). Privacy and Human Behavior in the Age of Information. Science, 347(6221), 509-514.
Acquisti, A., John, L. K., & Loewenstein, G. (2012). The Impact of Relative Standards on the Propensity to Disclose. Journal of Marketing Research, 49(2), 160-174.
Akarsu, T. N., Marvi, R., & Foroudi, P. (2023). Service Failure Research in the Hospitality and Tourism Industry: A Synopsis of Past, Present and Future Dynamics from 2001 to 2020. International Journal of Contemporary Hospitality Management, 35(1), 186-217.
Antaki, C., Barnes, R., & Leudar, I. (2005). Self‐Disclosure as a Situated Interactional Practice. British Journal of Social Psychology, 44(2), 181-199.
Aoki, N. (2020). An Experimental Study of Public Trust in AI Chatbots in the Public Sector. Government Information Quarterly, 37(4), 101490.
Araujo, T., Helberger, N., Kruikemeier, S., & De Vreese, C. H. (2020). In AI We Trust? Perceptions About Automated Decision-Making by Artificial Intelligence. AI & Society, 35, 611-623.
Arnold, M., Bellamy, R. K., Hind, M., Houde, S., Mehta, S., Mojsilović, A., ... & Varshney, K. R. (2019). Factsheets: Increasing Trust in AI Services Through Supplier's Declarations of Conformity. IBM Journal of Research and Development, 63(4/5), 6-1.
Ashfaq, M., Yun, J., Yu, S., & Loureiro, S. M. C. (2020). I, Chatbot: Modeling the Determinants of Users’ Satisfaction and Continuance Intention of AI-Powered Service Agents. Telematics and Informatics, 54, 101473.
Berry, L. L., Wall, E. A., & Carbone, L. P. (2006). Service Clues and Customer Assessment of the Service Experience: Lessons from Marketing. Academy of Management Perspectives, 20(2), 43-57.
Bolton, R. N. (1998). A Dynamic Model of the Duration of the Customer's Relationship with a Continuous Service Provider: The Role of Satisfaction. Marketing Science, 17(1), 45-65.
Bougie, R., Pieters, R., & Zeelenberg, M. (2003). Angry Customers Don't Come Back, They Get Back: The Experience and Behavioral Implications of Anger and Dissatisfaction in Services. Journal of the Academy of Marketing Science, 31(4), 377-393.
Buçinca, Z., Malaya, M. B., & Gajos, K. Z. (2021). To Trust or to Think: Cognitive Forcing Functions Can Reduce Overreliance on AI in AI-Assisted Decision-Making. Proceedings of the ACM on Human-Computer Interaction, 5(CSCW1), 1-21.
Caillier, J. G. (2023). Citizens Blame Agencies and Spread Negative Word-of-Mouth After Experiencing a Public Service Failure? Results from an Online Experiment. International Public Management Journal, 26(5), 708-727.
Castelo, N., Boegershausen, J., Hildebrand, C., & Henkel, A. P. (2023). Understanding and improving consumer reactions to service bots. Journal of Consumer Research, 50(4), 848-863.
Colquitt, J. A., Baer, M. D., Long, D. M., & Halvorsen-Ganepola, M. D. (2014). Scale Indicators of Social Exchange Relationships: A Comparison of Relative Content Validity. Journal of Applied Psychology, 99(4), 599.
De Mesquita, J. M. C., Shin, H., Urdan, A. T., & Pimenta, M. T. C. (2023). Measuring the Intention-Behavior Gap in Service Failure and Recovery: The Moderating Roles of Failure Severity and Service Recovery Satisfaction. European Journal of Marketing, 57(7), 1826-1853.
Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., ... & Wright, R. (2023). “So What If Chatgpt Wrote It?” Multidisciplinary Perspectives on Opportunities, Challenges and Implications of Generative Conversational AI for Research, Practice and Policy. International Journal of Information Management, 71, 102642.
Edström, A., Nylander, B., Molin, J., Ahmadi, Z., & Sörqvist, P. (2022). Where Service Recovery Meets Its Paradox: Implications for Avoiding Overcompensation. Journal of Service Theory and Practice, 32(7), 1-13.
Feaster, J. C. (2010). Expanding the Impression Management Model of Communication Channels: an Information Control Scale. Journal of Computer-Mediated Communication, 16(1), 115-138.
Foa, U. G., & Foa, E. B. (1974). Societal Structures of the Mind.
Folkes, V. S. (1984). Consumer Reactions to Product Failure: An Attributional Approach. Journal of Consumer Research, 10(4), 398-409.
Fuller, R., Stocchi, L., Gruber, T., & Romaniuk, J. (2023). Advancing the Understanding of the Pre-Purchase Stage of the Customer Journey for Service Brands. European Journal of Marketing, 57(2), 360-386.
Gelbrich, K., & Roschk, H. (2011). A Meta-Analysis of Organizational Complaint Handling and Customer Responses. Journal of Service Research, 14(1), 24-43.
Gillath, O., Ai, T., Branicky, M. S., Keshmiri, S., Davison, R. B., & Spaulding, R. (2021). Attachment and Trust in Artificial Intelligence. Computers in Human Behavior, 115, 106607.
Gilly, M. C., & Gelb, B. D. (1982). Post-Purchase Consumer Processes and the Complaining Consumer. Journal of Consumer Research, 9(3), 323-328.
Glikson, E., & Woolley, A. W. (2020). Human Trust in Artificial Intelligence: Review of Empirical Research. Academy of Management Annals, 14(2), 627-660.
Gottlieb, B. H., & Bergen, A. E. (2010). Social Support Concepts and Measures. Journal of Psychosomatic Research, 69(5), 511-520.
Hart, C. W., Heskett, J. L., & Sasser Jr, W. E. (1990). The Profitable Art of Service Recovery. Harvard Business Review, 68(4), 148-156.
He, A. Z., & Zhang, Y. (2023). AI-Powered Touch Points in the Customer Journey: A Systematic Literature Review and Research Agenda. Journal of Research in Interactive Marketing, 17(4), 620-639.
Hengstler, M., Enkel, E., & Duelli, S. (2016). Applied Artificial Intelligence and Trust—the Case of Autonomous Vehicles and Medical Assistance Devices. Technological Forecasting and Social Change, 105, 105-120.
Hess Jr, R. L. (2008). The Impact of Firm Reputation and Failure Severity on Customers' Responses to Service Failures. Journal of Services Marketing, 22(5), 385-398.
Hess Jr, R. L., Ganesan, S., & Klein, N. M. (2003). Service Failure and Recovery: The Impact of Relationship Factors on Customer Satisfaction. Journal of the Academy of Marketing Science, 31(2), 127-145.
Jacovi, A., Marasović, A., Miller, T., & Goldberg, Y. (2021, March). Formalizing Trust in Artificial Intelligence: Prerequisites, Causes and Goals of Human Trust in AI. In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (Pp. 624-635).
Kim, T. W., & Duhachek, A. (2020). Artificial Intelligence and Persuasion: A Construal-Level Account. Psychological Science, 31(4), 363-380.
Kim, T. W., Jiang, L., Duhachek, A., Lee, H., & Garvey, A. (2022). Do You Mind If I Ask You a Personal Question? How AI Service Agents Alter Consumer Self-Disclosure. Journal of Service Research, 25(4), 649-666.
Larsen, D. L., Attkisson, C. C., Hargreaves, W. A., & Nguyen, T. D. (1979). Assessment of Client/Patient Satisfaction: Development of a General Scale. Evaluation and Program Planning, 2(3), 197-207.
Li, C., Pan, R., Xin, H., & Deng, Z. (2020, June). Research on Artificial Intelligence Customer Service on Consumer Attitude and Its Impact During Online Shopping. In Journal of Physics: Conference Series (Vol. 1575, No. 1, P. 012192). IOP Publishing.
Liu-Thompkins, Y., Okazaki, S., & Li, H. (2022). Artificial Empathy in Marketing Interactions: Bridging the Human-AI Gap in Affective and Social Customer Experience. Journal of the Academy of Marketing Science, 50(6), 1198-1218.
Lu, V. N., Wirtz, J., Kunz, W. H., Paluch, S., Gruber, T., Martins, A., & Patterson, P. G. (2020). Service Robots, Customers and Service Employees: What Can We Learn from the Academic Literature and Where Are the Gaps?. Journal of Service Theory and Practice, 30(3), 361-391.
Marcus, G., & Davis, E. (2019). Rebooting AI: Building Artificial Intelligence We Can Trust. Vinatage.
Maxham III, J. G., & Netemeyer, R. G. (2002). A Longitudinal Study of Complaining Customers' Evaluations of Multiple Service Failures and Recovery Efforts. Journal of Marketing, 66(4), 57-71.
Meuter, M. L., Ostrom, A. L., Roundtree, R. I., & Bitner, M. J. (2000). Self-Service Technologies: Understanding Customer Satisfaction with Technology-Based Service Encounters. Journal of Marketing, 64(3), 50-64.
Meyer, N., Schwede, M., Hammerschmidt, M., & Weiger, W. H. (2022). Users Taking the Blame? How Service Failure, Recovery, and Robot Design Affect User Attributions and Retention. Electronic Markets, 32(4), 2491-2505.
Nyagadza, B., Mazuruse, G., Muposhi, A., Chuchu, T., Makoni, T., & Kusotera, B. (2022). Emotions' Influence on Customers’E-Banking Satisfaction Evaluation in E-Service Failure and E-Service Recovery Circumstances. Social Sciences & Humanities Open, 6(1), 100292.
Nguyen, H. D., Dodge, A., Dadej, K., Rintoul, T. L., Ponomareva, E., Martin, F. N., ... & Spies, C. F. (2022). Whole genome sequencing and phylogenomic analysis show support for the splitting of genus Pythium. Mycologia, 114(3), 501-515.
Oliver, R. L. (1999). Whence Consumer Loyalty?. Journal of Marketing, 63(4_Suppl1), 33-44.
Oliver, R. L., Rust, R. T., & Varki, S. (1997). Customer Delight: Foundations, Findings, and Managerial Insight. Journal of Retailing, 73(3), 311-336.
Pieters, W. (2011). Explanation and Trust: What to Tell the User in Security and AI?. Ethics and Information Technology, 13, 53-64.
Prentice, C., Dominique Lopes, S., & Wang, X. (2020). The impact of artificial intelligence and employee service quality on customer satisfaction and loyalty. Journal of Hospitality Marketing & Management, 29(7), 739-756.
Prentice, C., & Nguyen, M. (2020). Engaging and Retaining Customers with AI and Employee Service. Journal of Retailing and Consumer Services, 56, 102186.
Roschk, H., & Gelbrich, K. (2014). Identifying Appropriate Compensation Types for Service Failures: A Meta-Analytic and Experimental Analysis. Journal of Service Research, 17(2), 195-211.
Rossi, F. (2018). Building Trust in Artificial Intelligence. Journal of International Affairs, 72(1), 127-134.
Ryan, M. (2020). In AI We Trust: Ethics, Artificial Intelligence, and Reliability. Science and Engineering Ethics, 26(5), 2749-2767.
Sarason, I. G., Levine, H. M., Basham, R. B., & Sarason, B. R. (1983). Assessing Social Support: The Social Support Questionnaire. Journal of Personality and Social Psychology, 44(1), 127.
Schmidt, P., Biessmann, F., & Teubner, T. (2020). Transparency and Trust in Artificial Intelligence Systems. Journal of Decision Systems, 29(4), 260-278.
Sheth, J. N., Jain, V., & Ambika, A. (2023). The Growing Importance of Customer-Centric Support Services for Improving Customer Experience. Journal of Business Research, 164, 113943.
Shin, D. (2021). The Effects of Explainability and Causability on Perception, Trust, and Acceptance: Implications for Explainable AI. International Journal of Human-Computer Studies, 146, 102551.
Siau, K., & Wang, W. (2018). Building Trust in Artificial Intelligence, Machine Learning, and Robotics. Cutter Business Technology Journal, 31(2), 47-53.
Smith, A. K., Bolton, R. N., & Wagner, J. (1999). A Model of Customer Satisfaction with Service Encounters Involving Failure and Recovery. Journal of Marketing Research, 36(3), 356-372.
Sparks, B. A., & Mccoll-Kennedy, J. R. (2001). Justice Strategy Options for Increased Customer Satisfaction in a Services Recovery Setting. Journal of Business Research, 54(3), 209-218.
Tate, J. G., Bamford, S., Jubb, H. C., Sondka, Z., Beare, D. M., Bindal, N., ... & Forbes, S. A. (2019). COSMIC: the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Research, 47(D1), D941-D947.
Toreini, E., Aitken, M., Coopamootoo, K., Elliott, K., Zelaya, C. G., & Van Moorsel, A. (2020, January). The Relationship Between Trust in AI and Trustworthy Machine Learning Technologies. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (Pp. 272-283).
Tsiros, M., Mittal, V., & Ross Jr, W. T. (2004). The Role of Attributions in Customer Satisfaction: A Reexamination. Journal of Consumer Research, 31(2), 476-483.
Zhu, Z., Sivakumar, K., & Parasuraman, A. (2004). A Mathematical Model of Service Failure and Recovery Strategies. Decision Sciences, 35(3), 493-525.
World Bank. (2023). Share of economic sectors in the global gross domestic product (GDP) from 2012 to 2022. Retrieved from https://www.statista.com/statistics/256563/share-of-economic-sectors-in-the-global-gross-domestic-product/
經濟部商業發展署. (2023). 經濟部發表「2023商業服務業年鑑」 服務業產值逾13兆元、貢獻逾六成GDP. Retrieved from https://www.moea.gov.tw/MNS/populace/news/News.aspx?kind=1&menu_id=40&news_id=112887