簡易檢索 / 詳目顯示

研究生: 莊偉民
Wei-Min Chuang
論文名稱: 保護劑對斑馬魚側線機械性傳導通道之影響
Effects of protective agents on mechanotransduction channels in lateral-line hair cells of zebrafish larvae
指導教授: 林豊益
Lin, Li-Yih
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 66
中文關鍵詞: 斑馬魚側線毛細胞機械性傳導通道胺基糖苷類抗生素Amiloride
英文關鍵詞: zebrafish, lateral-line, hair cells, mechanotransducer channel, aminoglycoside antibiotics, Amiloride
論文種類: 學術論文
相關次數: 點閱:126下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 毛細胞的機械性傳導通道(mechanotransducer channel, MET channel)會受到機械性刺激而開啟。陽離子經由MET通道流入造成毛細胞發生去極化,而釋放神經傳遞物質。胺基糖苷類(aminogly- cosides, AGs)抗生素在臨床上被用於治療革蘭氏陰性菌感染的疾病,但是AGs常導致許多副作用包括內耳毛細胞的損傷,甚至聽力喪失。魚類側線毛細胞為一種機械性接受器,負責感覺外在水體的流動。哺乳動物內耳與魚類側線的毛細胞,兩者不論是構造形態或功能特性都有相似之處,因此斑馬魚常被採用作為耳毒性藥物篩選的模式動物。然而對於毛細胞MET通道的特性目前仍沒有很好的驗證方式。本研究應用非侵入掃描式離子選擇電極技術(scanning ion-selective electrode technique, SIET),針對斑馬魚胚胎的MET通道進行特性分析。毛細胞的纖毛束經微電極的機械性刺激後,可記錄到鈣離子流入,但是鉀離子與鈉離子的通透並不顯著。並且鈣離子流入會被AGs(neomycin和gentamicin)的短時間(30分鐘)處理所抑制,顯示MET通道可能被AGs所阻斷。將環境中鈣離子濃度從0.2 mM提高到2 mM,可減少neomycin和gentamicin對MET通道的阻斷;而提高水中的鎂離子濃度到5 mM,卻只能降低gentamicin對MET通道的阻斷。Amiloride過去被認為是一種MET通道的阻斷劑。本研究發現amiloride並無法阻斷側線毛細胞MET通道的鈣離子流入,但卻可降低AGs對MET通道的阻斷作用。

    The mechanotransducer (MET) channel on hair cells is gated by
    mechanical stimulation. Cation influx via MET channels causes depolarization of hair cells and eventually releasing of neurotransmitters.Aminoglycosides (AGs) antibiotics are clinically used to treat gram-negative bacterial infections, but they often cause side effects
    including damage of inner ear hair cells or even hearing loss. Fish lateral-line hair cells are mechanoreceptors for ambient current sensation. Since the lateral-line hair cells share structural and functional properties with mammalian inner ear hair cells, zebrafish has been used as a model animal for hair cell and ototoxicity studies. However, the property of MET channel in zebrafish hair cells has not been well examined. In this study, a non-invasive scanning ion-electrode technique (SIET) was
    applied to analyze the properties of MET channels in intact zebrafish embryos. Inward Ca2+ but not K+ and Na+ fluxes were recorded at the base of hair bundles as they were deflected by the microelectrode. The Ca2+ influx was suppressed by short-term treatment (30 min) of AGs
    (neomycin and gentamicin), suggesting that MET channels were blocked by AGs. Elevating external Ca2+ level (0.2 to 2 mM) neutralized the blockade of neomycin and gentamicin. However, elevating the Mg2+ level up to 5 mM only neutralized the blockade of gentamicin but not
    neomycin. Amiloride was considered as a MET channel blocker in previous studies, however, we found that amiloride cannot block Ca2+ influxes of MET channels, but it can neutralize the blockade of AGs.

    目錄........................................... 1 摘要........................................... 2 Abstract...................................... 4 前言........................................... 6 研究目的....................................... 17 材料與方法..................................... 21 實驗設計....................................... 19 結果...........................................26 討論.......................................... 34 總結.......................................... 42 參考文獻....................................... 43 圖表.......................................... 55

    Alharazneh, A., Luk, L., Huth, M., Monfared, A., Steyger, P.S., Cheng, A.G. and Ricci, A.J. (2011) Functional hair cell mechanotransducer channels are required for aminoglycoside ototoxicity. PLoS One. 6: e22347.
    Avraham, K.B. (2003) Mouse models for deafness: lessons for the human inner ear and hearing loss. Ear Hear. 24: 332-341.
    Banke, T.G., Chaplan, S.R. and Wickenden, A.D. (2010) Dynamic changes in the TRPA1 selectivity filter lead to progressive but reversible pore dilation. Am J Physiol Cell Physiol. 298: C1457-C1468.
    Becvarovski, Z., Michaelides, E.M., Kartush, J.M., Bojrab, D.I. and LaRouere, M.J. (2002) Rapid elevation of gentamicin levels in the human labyrinth following intravenous administration. Laryngoscope. 112: 1163-1165.
    Beurg, M. , Fettiplace, R. , Nam, J. H. and Ricci, A. J. (2010) Localization of inner hair cell mechanotransducer channels using high-speed calcium imaging. J Physiol. 588.5:765–772.
    Chan, D.K. and Hudspeth, A.J. (2005)Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro. Nat Neurosci. 8(2):149-155.
    Chiu, L.L., Cunningham, L.L., Raible, D.W., Rubel, E.W. and Ou, H.C. (2008) Using the zebrafish lateral line to screen for ototoxicity. J Assoc Res Otolaryngol. 9: 178-190.
    Clapham, D.E. (2003) TRP channels as cellular sensors. Nature. 426:517-524.
    Coffin, A.B., Reinhart, K.E., Owens, K.N., Raible, D. W. and Rubel, E. W. (2009) Extracellular divalent cations modulate aminoglycoside-induced hair cell death in the zebrafish lateral line. Hear. Res. 253:42-51.
    Coffin, A.B., Ou, H., Owens, K. N., Santo, F., Simon, J. A. and Rubel, E. W. (2010) Chemical screening for hair cell loss and protection in the zebrafish lateral line. Zebrafish. 7: 3-11.
    Colclasure, J.C. and Holt, J.R. (2003) Transduction and adaptation in sensory hair cells of the mammalian vestibular system. Gravit Space Biol Bull. 16(2):61-70.
    Coombs, S. and van Netten, S.M. (2006) The hydrodynamics and structural mechanics of the lateral line system. In: Shadwick, R., Lauder, G. (Eds.), Fish Biomechanics. 103-139.
    Corey, D.P. (2006) What is the hair cell transduction channel? J Physiol. 576: 23-28.
    Corey, D. P., Overos, J. G., Holt, J. R., Kwan, K. Y., Lin, S. Y., Vollrath, M. A., Amalfitano, A., Cheung, E. L-M., Derfler, B. H., Duggan, A., Geleoc, G. S. G., Gray, P. A., Hoffman, M. P., Rehm, H. L., Tamasauskas, D. and Zhang, D. S. (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature. 432(7018):723-730.
    Corey, D. P. and Hudspeth, A. J. (1979) Ionic basis of the receptor potential in a vertebrate hair cell. Nature. 281:675-677.
    De Groot, J.C., Huizing, E.H. and Veldman, J.E. (1991) Early ultrastructural effects of gentamicin cochleotoxicity. Acta Otolaryngol. 111: 273-280.
    Donini, A., Gaidhu, M.P., Strasberg, D.R. and O'donnell, M.J. (2007) Changing salinity induces alterations in hemolymph ion concentrations and Na+ and Cl- transport kinetics of the anal papillae in the larval mosquito, Aedes aegypti. J Exp Biol. 210: 983-92.
    Donini, A. and O’Donnell, M.J. (2005) Analysis of Na+, Cl-, K+, H+ and NH4+ concentration gradients adjacent to the surface of anal papillae of the mosquito Aedes aegypti: application of self-referencing ion-selective microelectrodes. J Exp Biol. 208: 603-610.
    Dulon, D., Hiel, H., Aurousseau, C., Erre, J.P. and Aran, J.M. (1993) Pharmacokinetics of gentamicin in the sensory hair cells of the organ of Corti: rapid uptake and long term persistence. C R Acad Sci III. 316: 682-687.
    Farris, H. E., LeBlanc, C. L., Goswami, J. and Ricci, A. J. (2004)Probing the pore of the auditory hair cell mechanotransducer channel in turtle. J Physiol. 558:769-792.
    Fettiplace, R. (2009) Defining features of the hair cell mechano- electrical transducer channel. Pflugers Arch. 458:1115-1123.
    Fettiplace, R., Ricci, A.J. and Hackney, C.M. (2001) Clues to the cochlear amplifier from the turtle ear. Trends Neurosci. 24:169-175.
    Furness, D.N., Hackney, C.M. and Evans, M.G. (2010) Localisation of the mechanotransducer channels in mammalian cochlear hair cells provides clues to their gating. J Physiol. 588: 765-772.
    Froehlicher, M., Liedtke, A., Groh, K.J., Neuhauss, S.C., Segner, H. and Eggen, R.I. (2009) Zebrafish (Danio rerio) neuromast: promising biological endpoint linking developmental and toxicological studies. Aquat Toxicol. 95: 307-319.
    Garber, S.S., Messerli, M.A., Hubert, M., Lewis, R., Hammar, K., Indyk, E. and Smith, P.J. (2005) Monitoring Cl- movement in single cells exposed to hypotonic solution. J Membr Biol. 203: 101-110.
    Garcia-Anoveros, J., Corey, D.P. (1997) The molecules of mechano- sensation. Annu Rev Neurosci. 20:567-594.
    Ghysen, A. and Chaudière, C.D. (2007) The lateral line microcosmos. Genes Dev. 21:2118-2130.
    Ghysen, A. and Chaudière, C.D. (2004) Development of the zebrafish lateral line. Curr Opin Neurobiol. 14:67-73.
    Hamill, O.P. and McBride, D.W. Jr. (1996) The pharmacology of mechanogated membrane ion channels. Pharmacol Rev. 48: 231-252.
    Harris, J. A., Cheng, A. G., Cunningham, L. L., Macdonald,G.,
    Raible, D. W and Rubel, E. W. (2003) Neomycin-Induced Hair Cell Death and Rapid Regeneration in the Lateral Line of Zebrafish (Danio rerio). J Assoc Res Otolarynqol. 04: 219-234.
    Hashino, E. and Shero, M. (1995) Endocytosis of aminoglycoside antibiotics in sensory hair cells. Brain Res. 704:135-140.
    Hayashida, T., Hiel, H., Dulon, D., Erre, J.P., Guilhaume, A. and Aran, J.M. (1989) Dynamic changes following combined treatment with gentamicin and ethacrynic acid with and without acoustic stimulation. Cellular uptake and functional correlates. Acta Oto-Laryngologica. 108:5-6.
    Horisberger, J.D.(1998) Amiloride-sensitive Na channels. Curr Opin Cell Biol. 10(4):443-9
    Horng, J.L., Lin, L.Y. and Hwang, P.P. (2009) Functional regulation of H+-ATPase -rich cells in zebrafish embryos acclimated to an acidic environment. Am J Physiol Cell Physiol. 296:C682-692.
    Huth, M.E., Ricci, A.J. and Cheng, A.G. (2011) Mechanisms of aminoglycoside ototoxicity and targets of hair cell protection. Int J Otolaryngol. 2011: 937861.
    Hwang, P.P., Lee, T.H. and Lin, L.Y. (2011) Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. Am J Physiol Regul Integr Comp Physiol. 301:R28-R47.
    Jorgensen, F. and Ohmori, H.(1988)Amiloride blocks the mechanoelectrical transduction channel of hair cells of the chick. J Physiol. 403:577-588.
    Kalinec, G.M., Webster, P., Lim, D.J. and Kalinec, F. (2003) A cochlear cell line as an in vitro system for drug ototoxicity screening. Audiol Neurootol. 8(4):177-189.
    Kindt, K.S., Finch, G. and Nicolson, T. (2012) Kinocilia mediate mechanosensitivity in developing zebrafish hair cells. Dev Cell. 23(2):329-341
    Kimitsuki, T., Wakasaki, T., Nawate, A., Komune, N., Takaiwa, K., Ohashi, M. and Komune, S. (2009) Dihydrostreptomycin goes through the mechano-electric transduction channel in chick cochlear hair cells. ORL J Otorhinolaryngol Relat Spec. 71(3):57-62.
    Kreitzer, M.A., Collis, L.P., Molina, A.J., Smith, P.J. and Malchow, R.P. (2007) Modulation of extracellular proton fluxes from retinal horizontal cells of the catfish by depolarization and glutamate. J Gen Physiol. 130:169-182.
    Kroese, A.B., Das, A. and Hudspeth, A.J. (1989) Blockage of the transduction channels of hair cells in the bullfrog’s sacculus by aminoglycoside antibiotics. Hear Res. 37:203-217.
    Kros, C.J., Rusch, A. and Richardson, G.P. (1992) Mechano- electrical transducer currents in hair cells of the cultured neonatal mouse cochlea. Proc Biol Sci. 249:185-193.
    Li, S., Yu, J., Zhu, M., Zhao, F. and Luan, S. (2012) Cadmium impairs ion homeostasis by altering K+ and Ca2+ channel activities in rice root hair cells. Plant Cell Environ. 35: 1998-2013.
    Lim, D.J. and Kalinec, F. (1998) Cell and molecular basis of hearing. Kidney Int Suppl. 65:S104-113.
    Lin, C.C., Lin, L.Y., Hsu, H.H., Thermes. V., Prunet, P. Horng, J.L. and Hwang, P.P. (2011) Acid secretion by mitochondrion-rich cells of medaka (Oryzias latipes) acclimated to acidic freshwater. Am J Phsiol Cell Physiol. 302, R283-R291.
    Lumpkin, E. A. and Caterina, M.J. (2007) Mechanisms of sensory transduction in the skin. Nature. 445:858-865.
    Malgrange, B., Belachew, S., Thiry, M., Nguyen, L., Rogister, B., Alvarez, M.L., Rigo, J.M., Van De Water, T.R., Moonen, G. and Lefebvre, P.P. (2002) Proliferative generation of mammalian auditory hair cells in culture. Mech Dev. 112: 79-88.
    Marcotti, W., Van Netten, S.M. and Kros, C.J. (2005) The aminoglycoside antibiotic dihydrostreptomycin rapidly enters mouse outer hair cells through the mechano-electrical transducer channels. J Physiol. 567:505-521.
    Marcotti, W. (2012) Functional assembly of mammalian cochlear hair cells. Exp Physiol. 97(4):438-451.
    Matsui, J.I., Gale, J.E. and Warchol, M.E. (2004) Critical signaling events during the aminoglycoside-induced death of sensory hair cells in vitro. J Neurobiol. 61:250-266.
    Messerli, M.A., Smith, P.J., Lewis, R.C. and Robinson, K.R. (2004) Chloride fluxes in lily pollen tubes: a critical reevaluation. Plant J. 40: 799-812.
    Murakami, S.L., Cunningham, L.L., Werner, L.A., Bauer, E., Pujol, R., Raible, D.W. and Rubel, E.W. (2003) Developmental differences in susceptibility to neomycin induced hair cell death in the lateral line neuromasts of zebrafish (Danio rerio). Hear Res. 186: 47-56.
    Nagata, K., Duggan, A., Kumar, G. and Garcı´a-Anoveros, J. (2005) Nociceptor and Hair Cell Transducer Properties of TRPA1, a Channel for Pain and Hearing. J Neurosci. 25(16 ): 4052- 4061.
    Ohmori, H. (1985) Mechano-electrical transduction currents in isolated vestibular hair cells of the chick. J Physiol. 359:189-217.
    Owens, K.N., Santos, F. and Roberts, B. (2008) Identification of genetic and chemical modulators of zebrafish mechanosensory hair cell death. PLoS Genet. 4: e1000020
    Owens, K. N., Coffin, A. B., Hong, L. S., Bennett, K. O. C., Rubel, E. W. and Raible, D. W. (2009) Response of mechanosensory hair cells of the zebrafish lateral line to aminoglycosides reveals distinct cell death pathways. Hear Res. 253:32-41.
    Ou, H.C., Santos, F., Raible, D.W., Simon, J.A. and Rubel, E.W. (2010) Drug screening for hearing loss: using the zebrafish lateral line to screen for drugs that prevent and cause hearing loss. Drug Discov Today. 15: 265-271.
    Ou, H.C., Raible, D.W. and Rubel, E.W. (2007) Cisplatin-induced hair cell loss in zebrafish (Danio rerio) lateral line. Hear Res. 233, 46–53.
    Peusner, K.D. (2001) Development of the gravity sensing system. J Neurosci Res. 63(2):103-108.
    Reid S.D., Hawkings G.S., Galvez F. and Goss G.G. (2003) Localization and characterization of phenamil-sensitive Na+ influx in isolated rainbow trout gill epithelial cells. J Exp Biol. 206: 551-559.
    Ricci, A.J., Kennedy, H.J., Crawford, A.C. and Fettiplace, R. (2005) The transduction channel filter in auditory hair cells. Journal of Neuroscience. 25: 7831–7839.
    Ricci, A. (2002) Differences in mechano-transducer channel kinetics underlietonotopic distribution of fast adaptation in auditory hair cells. J Neurophysiol. 87:1738-1748.
    Ricci, A.J. and Fettiplace, R. (1998) Calcium permeation of the turtle hair cell mechanotransducer channel and its relation to the composition of endolymph. J Physiol. 506:159-173.
    Richardson, G.P., Forge, A., Kros, C.J., Fleming, J., Brown, S.D. and Steel, K.P. (1997) Myosin VIIA is required for aminoglycoside accumulation in cochlear hair cells. J Neurosci. 17: 9506-9519.
    Richardson, G.P. and Russell, I.J. (1991) Cochlear cultures as a model system for studying aminoglycoside induced ototoxicity. Hear Res. 53: 293-311.
    Ronca, A.E., Fritzsch, B., Alberts, J.R. and Bruce, L.L. (2000) Effects of microgravity on vestibular development and function in rats: genetics and environment. Korean J Biol Sci. 4(3):215-221
    Rusch, A., Kros, C.J. and Richardson, G.P. (1994) Block by amiloride and its derivatives of mechano-electrical transduction in outer hair cells of mouse cochlear cultures. J Physiol. 474:75-86.
    Schwander, M., Kachar, B. and Müller, U. (2010) Review series: The cell biology of hearing. J Cell Biol.190(1):9-20.
    Shen, W.P., Horng, J.L. and Lin, L.Y. (2011) Functional plasticity of mitochondrion-rich cells in the skin of euryhaline medaka larvae (Oryzias latipes) subjected to salinity changes. Am J Physiol Regul Integr Comp Physiol. 300:R858-R68.
    Shih, T.H., Horng, J.L., Liu, S.T., Hwang, P.P. and Lin, L.Y. (2012) Rhcg1 and NHE3b are involved in ammonium-dependent sodium uptake by zebrafish larvae acclimated to low-sodium water. Am J Physiol Regul Integr Comp Physiol. 302:R84-R93.
    Smith, P.J., Hammar, K., Porterfield, D.M., Sanger, R.H. and Trimarchi, J.R. (1999) Self-referencing, non-invasive, ion selective electrode for single cell detection of trans-plasma membrane calcium flux. Microsc Res Tech. 46:398-417.
    Sun, J., Chen, S., Dai, S., Wang, R., Li, N., Shen, X., Zhou, X., Lu, C., Zheng, X., Hu, Z., Zhang, Z., Song, J. and Xu, Y. (2009) NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiol. 149:1141-1153.
    Stupp, H., Küpper, K., Lagler, F., Sous, H. and Quante, M. (1973) Inner ear concentrations and ototoxicity of different antibiotics in local and systemic application. Audiology. 12:350-63.
    Tanimoto, M., Ota, Y., Horikawa, K. and Oda, Y. (2009) Auditory input to CNS is acquired coincidentally with development of inner ear after formation of functional afferent pathway in zebrafish. J Neurosci. 29(9):2762-2767.
    Tanimoto, M., Ota, Y., Inoue, M. and Oda, Y. (2011) Origin of inner ear hair cells: morphological and functional differentiation from ciliary cells into hair cells in zebrafish inner ear. J Neurosci. 31: 3784-3794.
    Trapani, J.G. and Nicolson, T. (2011) Mechanism of spontaneous activity in afferent neurons of the zebrafish lateral-line organ. J Neurosci. 31: 1614-1623.
    Tran Ba Huy, P., Bernard, P. and Schacht, J. (1986) Kinetics of gentamicin uptake and release in the rat: comparison of inner ear tissues and fluids with other organs. J Clin Invest. 77:1492-1500.
    Ton, C. and Parng, C. (2011) The use of zebrafish for assessing ototoxic and otoprotective agents. Hear Res. 208:79-88.
    Trump, W. J. V., Coombs, S., Duncan, K. and McHenry, M. J. (2010)Gentamicin is ototoxic to all hair cells in the fish lateral line system. Hear Res. 261:42-50.
    Yang, X. C. and Sachs, F. (1989) Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science. 243:1068-1071.
    Waguespack, J.R. and Ricci, A.J. (2005) Aminoglycoside ototoxicity: permeant drugs cause permanent hair cell loss. Journal of Physiology. 567: 359-360.
    Warchol, M.E. (2010) Cellular mechanisms of aminoglycoside ototoxicity. Curr Opin Otolaryngol Head Neck Surg. 18: 454-458.
    Wersinger, E. and Fuchs, P.A. (2011) Modulation of hair cell efferents. Hear Res. 279(1-2):1-12.
    Williams, J.A. and Holder, N. (2000). Cell turnover in neuromasts of zebrafish larvae. Hear Res. 143:171-181.
    Wu, S.C., Horng, J.L., Liu, S.T., Hwang, P.P., Wen, Z.H., Lin, C.S. and Lin, L.Y. (2010) Ammonium-dependent sodium uptake in mitochondrion-rich cells of medaka (Oryzias latipes) larvae. Am J Physiol Cell Physiol. 298:C237-C250.
    Zdebik, A.A., Wangemann P. and Jentsch T.J. (2009) Potassium ion movement in the inner ear: insights from genetic disease and mouse models. Physiology. (Bethesda) 24:307-316.
    Zenner, H.P. and Plinkert, P.K. (1992) A.C. and D.C. motility of mammalian auditory sensory cells--a new concept in hearing physiology. Otolaryngol Pol. 46(4):333-349.

    下載圖示
    QR CODE