簡易檢索 / 詳目顯示

研究生: 彭紹瑋
Peng, Shao-Wei
論文名稱: 碳化鎢刀具披覆氮化鋯鎢硬質薄膜提升切削性能之研究
Coating of ZrWN hard film to improve the cutting performance of tungsten carbide tools
指導教授: 屠名正
Twu, Ming-Jenq
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 66
中文關鍵詞: 灰關聯田口法氮化鋯鎢奈米壓痕
英文關鍵詞: Taguchi method, Grey system theory, ZrWN film, Nano-indentation
DOI URL: https://doi.org/10.6345/NTNU202204846
論文種類: 學術論文
相關次數: 點閱:302下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氮化物薄膜具高硬度、高抗磨耗、低摩擦係數、優越抗化學腐蝕性及高溫熱穩定性等,常鍍覆於切削刀具、模具、磁頭、光學保護膜、生醫材料等,可有效延長刀具及模具壽命,廣用於傳統產業、機械業、航太工業等。
    本研究利用直流(DC)磁控濺鍍,沉積氮化鋯鎢(ZrWN)薄膜於碳化鎢基材,使用Zr及W為靶材,Ar為濺射氣體,N2為反應氣體。應用田口實驗設計法,L9 (34)混合直交表與變異數分析,探討不同濺鍍參數(基材電漿蝕刻時間、氬氮比、沉積時間與製程溫度) 影響ZrWN薄膜特性,有效提升碳化鎢刀具切削壽命。以SEM觀察薄膜微結構,XRD分析薄膜結晶,奈米壓痕分析薄膜微硬度。
    本研究車削AISI 304不鏽鋼(乾切削),顯示鍍層刀具的性能皆優於未鍍層刀具。配合田口-灰關聯分析,獲得本研究最佳製備ZrWN參數(A3B1C3D3),即基材電漿蝕刻時間=15 min,N2/(N2+Ar) =10%,沉積時間=15 min,製程溫度=200oC。經車削AISI 304不鏽鋼實驗驗証顯示,工件表面粗糙度由0.98降低到0.70μm,刀腹磨耗由21.15μm降低到14.02μm,且ZrWN薄膜硬度由21.65 GPa增加到24.18 GPa。
    經分析顯示基材(刀具)電漿蝕刻時間為影響ZrWN薄膜製備參數的最顯著因子,較長的基材電漿蝕刻時間有較佳的ZrWN薄膜特性。
    本研究比較二元合金氮化物(ZrN、WN)與三元合金氮化物(ZrWN),經實驗驗證,顯示ZrWN薄膜鍍層刀具乾切削AISI 304不鏽鋼,有較佳的切削性能(低工件表面粗糙度、低刀腹磨耗)。薄膜經奈米壓痕分析,顯示ZrWN薄膜有較高的硬度與彈性回復量。

    Nitride film has high hardness, high wear resistance, low friction coefficient, excellent chemical resistance and thermal stability.
    Often coated in cutting tools, molds, heads, optical protection films, biomedical materials, which can effectively extend tool and cutting life, widely used in traditional industry, machinery industry, and the aerospace industry.
    In this study, the use of direct current (DC) magnetron sputtering, depositing tungsten nitride, zirconium (ZrWN) film on tungsten carbide substrates, using Zr and W target, Ar as the sputtering gas, N2 for the reaction gas.
    Application of Taguchi experimental design method, L9 (34) orthogonal table with mixed analysis of variance, explore different sputtering parameters (substrate plasma etching time, argon-nitrogen ratio, deposition time and substrate temperature) ZrWN film properties, effectively raising the carbonization tungsten cutting tool life. Film microstructure was observed with SEM, XRD analysis of thin-film crystal, nano-film micro hardness indentation analysis.
    In this study, AISI 304 stainless steel turning (dry cutting), display performance tool coating are superior to uncoated tools. With Taguchi - gray correlation analysis, get the best preparation of this study ZrWN parameters (A3B1C3D3), namely the substrate plasma etching time = 15 min, argon nitrogen ratio = 10%, deposition time = 15 min, substrate temperature = 200oC.
    AISI 304 stainless steel by turning experiments show that the surface roughness is reduced to 0.98 from the 0.70 μm, worn by the 21.15 μm knife belly down to 14.02 μm, and ZrWN film hardness by the 21.65 GPa to 24.18 GPa.
    The analysis shows substrate (tool) plasma etching time is the most significant factor affecting ZrWN film preparation parameters, and plasma etching the substrate long time gise a better ZrWN film properties.
    This study compared the binary alloy nitride (ZrN,WN) ternary alloy nitride (ZrWN), after experimental verification, the tool displays ZrWN film coating dry cutting AISI 304 stainless steel, has a better cutting performance (low surface roughness low cutter wear belly). The thin film nano-indentation analysis, display ZrWN film with high hardness and elastic recovery.

    摘 要..............................................i ABSTRACT...........................................iii 誌 謝...............................................v 目 錄...............................................vi 第一章 緒論.........................................1 1.1 前言............................................1 1.2 研究動機與目的...................................1 第二章 基礎理論與文獻回顧............................3 2.1 電漿原理........................................3 2.2 硬質薄膜的發展與應用.......................... ...3 2.2.1 本質性氮化物硬膜...............................4 2.2.2 外延性氮化物薄膜...............................5 2.3 濺鍍原理........................................6 2.3.1 射頻濺鍍......................................7 2.3.2 磁控濺鍍......................................8 2.4 薄膜沉積理論....................................8 2.4.1 薄膜表面與截面................................10 2.4.2 薄膜的機械特性................................11 2.5奈米壓痕實驗理論.................................11 2.6田口式實驗規劃法.................................13 2.6.1 田口直交表...................................14 2.6.2 因子的分類...................................15 2.6.3 數據分析法...................................16 2.7 灰關聯分析法...................................18 第三章 實驗方法....................................21 3.1實驗流程........................................21 3.2實驗規劃........................................23 3.2.1 切削實驗參數設定..............................23 3.2.2 電漿蝕刻與濺鍍ZrWN薄膜參數設定.................23 3.3 實驗設備與材料..................................24 3.3.1 濺鍍設備.....................................24 3.3.2 實驗材料.....................................25 3.4 實驗步驟.......................................26 3.4.1 蝕刻步驟.....................................26 3.4.2 薄膜濺鍍步驟..................................26 3.5 實驗分析儀器....................................27 3.5.1 表面輪廓儀(α-step)............................27 3.5.2 場發射掃描式電子顯微鏡(SEM)....................27 3.5.3 表面粗糙度量測器...............................28 3.5.4 工具顯微鏡....................................30 3.5.5 奈米壓痕機....................................31 3.5.6 X光繞射分析...................................32 第四章 實驗結果與討論................................33 4.1 不同蝕刻時間對刀具表面之影響..................33 4.2 田口實驗結果與分析 ...........................35 4.2.1刀具濺鍍參數對工件表面粗糙度影響..................35 4.2.2不同濺鍍參數對刀腹磨耗影響.......................37 4.3 灰關聯分析......................................39 4.4 最佳化參數實驗驗證...............................41 4.5 表面結構........................................43 4.5.1 切削後不鏽鋼表面之微結構........................43 4.5.2 刀腹磨耗表面微結構.............................44 4.6 氮化鋯鎢薄膜結構分析.............................46 4.6.1 薄膜XRD分析...................................46 4.6.2 薄膜SEM橫截面觀察..............................47 4.6.3 奈米壓痕(nano-indentation)分析.................47 4.6.4 氮化鋯鎢、氮化鋯與氮化鎢薄膜探討.................49 第五章 結論.........................................51 參考文獻............................................53

    [1] R. Chandra, P. Dubey, V. Arya, S.K. Srivastava, D. Singh, “Study of thermal
    stability and mechanical properties of fcc phase Zr22W19N58 thin films deposited by reactive magnetron sputtering,"Surface & Coatings Technology, Vol. 245, pp. 34-39, 2014.
    [2] R. Chandra, P. Dubey, V. Dave, S. Srivastava, D. Singh, “Study of thermal stability and mechanical properties of amorphous Zr19W18N63 coatings deposited by DC/RF reactive magnetron sputtering,"Surface & Coatings Technology, Vol. 237, pp. 205-211, 2013.
    [3] R. Chandra, P. Dubey, V. Arya, S. Srivastava, D. Singh, “Effect of nitrogen flow rate on structural and mechanical properties of Zirconium Tungsten Nitride (Zr–W–N) coatings deposited by magnetron sputtering,"Surface & Coatings Technology, Vol. 236, pp. 182-187, 2013.
    [4] 陳婷婷,以氧氣電漿蝕刻的鑽石奈米管之場發特性研究,國立清華大學,博士論文,2000。
    [5] V. Craciun, D. Craciun, G. Socol, G. Dorcioman, D. Simeone, D. Gosset ,
    S. Behdad, B. Boesl, “Ar ions irradiation effects in ZrN thin films grown by pulsed laser deposition,"Applied Surface Science, Vol. 336, pp. 129-132, 2015.
    [6] C.Y. Hsu, G.C. Chen, C.C. Hu, C.H. Wang a, T.W. Lu, “Direct current reactive co-sputter deposition of CrWN films to enhance cutting tool performance,"Int. Journal of Refractory Metals and Hard Materials, Vol. 37, pp. 82-89, 2013.

    [7] 鄭耿豪,利用射頻磁控濺鍍法製備高熵合金氮化物硬質薄膜,國立清華
    大學,碩士論文,2005。
    [8] 陳曉帆,以陰極電弧鍍膜系統度至氮化鉻/氮化鋯奈米多層薄膜之研究,國立台灣科技大學,碩士論文,2001。
    [9] B.J. Mueller, M. Mock, V. Haug, F. Hergert, T. Koehler, S. Zweigart, U. Herr, “Ex- and in-situ investigations of sulfur diffusion into Cu(In,Ga)Se2 thin films,"Thin Solid Films, Vol. 582, pp. 284-289, 2015.
    [10] 王仁宗,磁控濺鍍沉積含鈦類鑽碳膜提昇刀具切削性能之研究,碩士論文,龍華科技大學,2014。
    [11] M.K. Bull, R.J. Steele, M. Kelly, S.A. Olivier, B. Chapman, “Packaging under pressure: Effects of high pressure, high temperature processing on
    the barrier properties of commonly available packaging materials,"Innovative Food Science and Emerging Technologies, Vol. 11, pp. 533-537, 2010.
    [12] C.Y. Hsu, S.S. Wang, F.J.Shiou, C.C.Tsao, S.W.Huang, “An evaluation of the deposition parameters for indium sulfide (In2S3) thin films using the grey-based Taguchi method,"Materials Science in Semiconductor Processing, Vol. 16, pp. 1879-1887, 2013.
    [13] S. Veprek, P. Karvankova, M.G. J. Veprek-Heijman, J. Prochazka, “Different approaches to superhard coatings and nanocomposites,"Thin Solid Films, Vol. 476, pp. 11-29, 2005.
    [14] 楊恆傑,直流式磁控濺鍍鋯及氮化鋯薄膜性質、結構與擴散阻障層應用之研究,碩士論文,國立成功大學,2002。
    [15] Aharon Inspektor, Paul A. Salvador, “Architecture of PVD coatings for metalcutting applications: A review,"Surface & Coatings Technology, Vol. 257, pp. 138-153, 2014.
    [16] 溫健棠,奈米壓痕試驗與數值模擬,碩士論文,國立成功大學,2008。
    [17] 顧庭安,鐵鈀薄膜之機械性質研究-楊氏係數、硬度與薄膜應力,碩士
    論文,國立台灣科技大學,2010。
    [18] 關口育正,利用田口法最佳化鐵酸鉍摻雜鈮之MFIS電容器,碩士論文,
    國立臺灣師範大學,2014。
    [19] Vinh V. Thai, Qingji Zhou, “Fuzzy and grey theories in failure mode and effect analysis for tanker equipment failure prediction,"Safety Science, Vol. 83, pp. 74-79, 2016.
    [20] 林祐全,沉積參數和退火溫度對氧化鋅鋁的影響,碩士論文,龍華科技
    大學,2010。
    [21] Arun K. Sikder, Ashok Kumar, “SUPERHARD COATINGS IN C- B- N SYSTEMS GROWTH AND CHARACTERIZATION,"Chapter 3, pp. 157, 2002.
    [22] Q.F. Fang, J.F. Yang, Z.G. Yuan, G.G. Zhang, X.P. Wang, “Manufacture, microstructure and mechanical properties of Mo–W–N nanostructured hard films,"Materials Research Bulletin, Vol. 44, pp. 1948-1953, 2009.

    下載圖示
    QR CODE