研究生: |
陳昭穎 Chern, Zhao-Ying |
---|---|
論文名稱: |
燃料轉換效率於多元金屬催化劑之理論計算研究:硫毒化反應與甲醇氧化反應 Computational Study of Heterogeneous Catalysis in Fuel Cell Applications: Sulfur Poisoning Reactions and Methanol Oxidation Reactions |
指導教授: |
王禎翰
Wang, Jeng-Han |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | 密度泛函理論 、鈣鈦礦 、鉑 、石墨烯 、釕 、鐵 、鈦 、三元合金 、硫毒化反應 、甲醇氧化反應 、甲酸氧化反應 、固態氧化物燃料電池 、直接甲醇燃料電池 、直接甲酸燃料電池 |
英文關鍵詞: | Density Functional Theory (DFT), Ruthenium (Ru), Titanium (Ti), ternary alloy, sulfur-poison reaction, methanol oxidation reaction (MOR), formic acid oxidation reaction (FAOR), Solid Oxide Fuel Cells (SOFCs), Direct Formic Acid Fuel Cells (DFAFCs) |
DOI URL: | http://doi.org/10.6345/NTNU201900141 |
論文種類: | 學術論文 |
相關次數: | 點閱:170 下載:13 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文以第一性原理計算幾個不同的異質催化反應在燃料電池的應用,包括 (1) 第二章討論硫毒化與移除於BaZrO3陽極的反應, (2) 第三章討論甲醇裂解反應於鉑—石墨烯之性質, (3) 第四章討論甲醇氧化反應 (MOR) 與甲酸氧化反應 (FAOR) 於鉑三元合金 (PtRuM, M=Fe, Ti) 陽極之性質。
第二章節中,計算結果發現燃料中含有的H2S(g)會毒害催化劑表面,此為強放熱反應,然而,移除硫化物為吸熱反應。表示硫毒化為一自發性發生且難避免的反應。研究發現水的加入可以幫助硫化物的移除。除此之外,我們還列出了反應熱與自由能以及電池電動勢之間的關聯性,以此探討電池偏壓以及H2S(g)與H2O(g)的氣體分壓對於硫化反應的影響。第三章討論以石墨烯為擔體之鉑催化劑對於甲醇吸附的性質差異。根據石墨烯與鉑的結合角度可分為0o和30o角,研究結果發現甲醇可吸附在鉑團簇上,但對於鉑層吸附較弱。此種差異可以應用於材料的保護層。第四章討論配位基效應與雙官能基效應對於MOR與FAOR於鉑釕三元合金 (PtRuM, M=Fe, Ti) 上造成的反應差異。鐵的加入可使周圍電子離域化,而鈦的加入可使電子更局域化。總體來看,PtRuTi可以幫助MOR與FAOR更容易進行反應,而鐵的加入幫助不大。
Our present work utilized the first-principle calculations to investigate several important heterogeneous catalytic reactions in the fuel cells applications, including (1) sulfur poisoning and removal reactions on BaZrO3 based anodes in Chapter 2, (2) Methanol decomposition reaction on Pt layers and Pt clusters supported by graphene in Chapter 3, (3) Methanol oxidation reaction (MOR) and formic acid oxidation reaction (FAOR) on PtRuM (M=Fe, Ti) trimetallic anode in Chapter 4.
In Chapter 2, our computational results found that the poisoning reaction from gas-phase H2S, fuel contamination, to bulk sulfide formation in highly exothermic, while the sulfur removing reaction from sulfide to gas-phase SO2 formation by small amount of H2O is endothermic, indicating the poisoning behavior is spontaneous and rapid and hard to avoid. Additionally, we utilized the thermodynamic corrections for the Gibbs free energy calculation to reveal the effects of bias potential and partial pressures of H2S and H2O. In Chapter 3, we initially constructed Pt layers and clusters on graphene supporter and found two types of models as the beneath graphene has 0o and 30o rotations, G0-Pt (or G0-Pt37) and G30-Pt (or G30-Pt37). Furthermore, we examined methanol adsorption on them and found that methanol can tightly adsorbed on the Pt clusters while is loose on Pt layers, in comparing with their (111) surfaces. The results explain the inertness of graphene supported Pt layers that is applicable for the protection-layer materials. In Chapter 4, we examined the ligand and bifunctional effects of MOR and FAOR between PtRuM (M=Fe, Ti) ternary materials. Introducing Fe in PtRu makes the neighboring electrons more delocalized; in contrast, Ti makes PtRu more localized. As a result, PtRuTi can assist MOR and FAOR, but PtRuFe cannot.
1. Kakati, N. et al. Anode catalysts for direct methanol fuel cells in acidic media: Do we have any alternative for Pt or Pt-Ru? Chem. Rev. 114, 12397–12429 (2014).
2. Thomas, L. H. The calculation of atomic fields. Math. Proc. Cambridge Philos. Soc. 23, 542 (2008).
3. Fermi, E. Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente. Zeitschrift für Phys. 48, 73–79 (1928).
4. Hohenberg, P. &Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).
5. Kohn, W. &Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).
6. Perdew, J. P., Ernzerhof, M. &Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982–9985 (1996).
7. Perdew, J. P. &Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).
8. Wigner, E. &Seitz, F. On the constitution of metallic sodium. Phys. Rev. 43, 804–810 (1933).
9. Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. &Joannopoulos, J. D. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045–1097 (1992).
10. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
11. Monkhorst, H. J. &Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).
12. Henkelman, G., Uberuaga, B. P. &Jónsson, H. Climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).
13. Sheppard, D., Xiao, P., Chemelewski, W., Johnson, D. D. &Henkelman, G. A generalized solid-state nudged elastic band method. J. Chem. Phys. 136, (2012).
14. Peralta, J. E., Heyd, J., Scuseria, G. E. &Martin, R. L. Spin-orbit splittings and energy band gaps calculated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. Phys. Rev. B - Condens. Matter Mater. Phys. 74, 073101 (2006).
15. Sasaki, K. et al. Chemical durability of Solid Oxide Fuel Cells: Influence of impurities on long-term performance. J. Power Sources 196, 9130–9140 (2011).
16. He, H., Gorte, R. J. &Vohs, J. M. Highly Sulfur Tolerant Cu-Ceria Anodes for SOFCs. Electrochem. Solid-State Lett. 8, A279 (2005).
17. Huang, Y.-H., Dass, R. I., Xing, Z.-L. &Goodenough, J. B. Double perovskites as anode materials for solid-oxide fuel cells. Science 312, 254–7 (2006).
18. Choi, Y. M., Compson, C., Lin, M. C. &Liu, M. A mechanistic study of H2S decomposition on Ni- and Cu-based anode surfaces in a solid oxide fuel cell. Chem. Phys. Lett. 421, 179–183 (2006).
19. Wang, J.-H. &Liu, M. Surface regeneration of sulfur-poisoned Ni surfaces under SOFC operation conditions predicted by first-principles-based thermodynamic calculations. J. Power Sources 176, 23–30 (2008).
20. Galea, N. M., Lo, J. M. H. &Ziegler, T. A DFT study on the removal of adsorbed sulfur from a nickel(111) surface: Reducing anode poisoning. J. Catal. 263, 380–389 (2009).
21. Verbraeken, M. C. et al. Modified strontium titanates: from defect chemistry to SOFC anodes. RSC Adv. 5, 1168–1180 (2015).
22. Yang, L. et al. Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs: BaZr0.1Ce0.7Y0.2-xYbxO3-δ. Science 326, 126–129 (2009).
23. Sengodan, S. et al. Enhancing Sulfur Tolerance of a Ni-YSZ Anode through BaZr0.1Ce0.7Y0.1Yb0.1O3−δ Infiltration. J. Electrochem. Soc. 161, F668–F673 (2014).
24. Boldrin, P. et al. Strategies for Carbon and Sulfur Tolerant Solid Oxide Fuel Cell Materials, Incorporating Lessons from Heterogeneous Catalysis. Chem. Rev. 116, 13633–13684 (2016).
25. Li, X. et al. In Situ Probing of the Mechanisms of Coking Resistance on Catalyst-Modified Anodes for Solid Oxide Fuel Cells. Chem. Mater. 27, 822–828 (2015).
26. Stokes, S. J. &Islam, M. S. Defect chemistry and proton-dopant association in BaZrO3 and BaPrO3. J. Mater. Chem. 20, 6258 (2010).
27. Davies, R. A., Islam, M. S. &Gale, J. D. Dopant and proton incorporation in perovskite-type zirconates. Solid State Ionics 126, 323–335 (1999).
28. Kröger, F. A. &Vink, H. J. Relations between the Concentrations of Imperfections in Crystalline Solids. Solid State Phys. 3, 307–435 (1956).
29. Antolini, E. Palladium in fuel cell catalysis. Energy Environ. Sci. 2, 915 (2009).
30. Bianchini, C. &Shen, P. K. Palladium-Based Electrocatalysts for Alcohol Oxidation in Half Cells and in Direct Alcohol Fuel Cells. Chem. Rev. 109, 4183–4206 (2009).
31. Gong, K., Du, F., Xia, Z., Durstock, M. &Dai, L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–4 (2009).
32. Tang, Y., Allen, B. L., Kauffman, D. R. &Star, A. Electrocatalytic Activity of Nitrogen-Doped Carbon Nanotube Cups. J. Am. Chem. Soc. 131, 13200–13201 (2009).
33. Yang, L. et al. Boron-Doped Carbon Nanotubes as Metal-Free Electrocatalysts for the Oxygen Reduction Reaction. Angew. Chemie Int. Ed. 50, 7132–7135 (2011).
34. Fampiou, I. &Ramasubramaniam, A. Binding of Pt Nanoclusters to Point Defects in Graphene: Adsorption, Morphology, and Electronic Structure. J. Phys. Chem. C 116, 6543–6555 (2012).
35. Kou, R. et al. Stabilization of Electrocatalytic Metal Nanoparticles at Metal−Metal Oxide−Graphene Triple Junction Points. J. Am. Chem. Soc. 133, 2541–2547 (2011).
36. Liu, M., Zhang, R. &Chen, W. Graphene-Supported Nanoelectrocatalysts for Fuel Cells: Synthesis, Properties, and Applications. Chem. Rev. 114, 5117–5160 (2014).
37. Parr, R. G. &Yang, W. Density functional approach to the frontier-electron theory of chemical reactivity. J. Am. Chem. Soc. 106, 4049–4050 (1984).
38. Kang, D. K. et al. Effect of transition metals (Ni, Sn and Mo) in Pt5Ru4M alloy ternary electrocatalyst on methanol electro-oxidation. J. Ind. Eng. Chem. 16, 385–389 (2010).
39. Wang, D.-Y. et al. Simple Replacement Reaction for the Preparation of Ternary Fe1-xPtRux Nanocrystals with Superior Catalytic Activity in Methanol Oxidation Reaction. J. Am. Chem. Soc. 134, 10011–10020 (2012).
40. Jeon, M. K., Won, J. Y., Lee, K. R. &Woo, S. I. Highly active PtRuFe/C catalyst for methanol electro-oxidation. Electrochem. commun. 9, 2163–2166 (2007).
41. Strasser, P. et al. High Throughput Experimental and Theoretical Predictive Screening of Materials − A Comparative Study of Search Strategies for New Fuel Cell Anode Catalysts. J. Phys. Chem. B 107, 11013–11021 (2003).
42. Rößner, L. &Armbrüster, M. Electrochemical Energy Conversion on Intermetallic Compounds: A Review. ACS Catal. 9, 2018–2062 (2019).
43. Becke, A. D. &Edgecombe, K. E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92, 5397–5403 (1990).
44. Scofield, M. E., Koenigsmann, C., Wang, L., Liu, H. &Wong, S. S. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction. Energy Environ. Sci. 8, 350–363 (2015).