簡易檢索 / 詳目顯示

研究生: 邱韋傑
Chiu, Wei-Jie
論文名稱: 一種線上加速度精密電解法於倒錐微孔噴嘴成形研究
Study on an in-situ Acceleration Precision Electro-Chemical Machining (A-PECM) for making a nozzle with inverted taper-microhole
指導教授: 陳順同
Chen, Shun-Tong
鄭慶民
Cheng, Ching-Min
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 122
中文關鍵詞: 加速度精密電解加工技術倒錐微孔同位電解周面絕緣
英文關鍵詞: A-PECM, Inverted tapered microhole, In-situ ECM, peripheral insulation
DOI URL: http://doi.org/10.6345/NTNU202000165
論文種類: 學術論文
相關次數: 點閱:311下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在開發「加速度精密電解加工技術(Acceleration Precision Electro-Chemical Machining, A-PECM)」,目的在成形具有倒錐造型的噴嘴微孔,應用於如生醫方面的藥物塗佈、汽車工業的柴油引擎及半導體產業的濕式蝕刻等的噴嘴用途。實驗之初,先行開發一部「桌上型精微電解加工系統」,並提出「同位電解法(In-situ ECM)」,使精微鑽孔與精微電解兩製程能在同軸心條件下,精準對位創成。微孔電解所用電極係為直徑 0.1 mm的實心碳化鎢圓軸。為獲得高可控制性的電場分佈,實驗規劃以環氧樹脂絕緣法(Epoxy resin isolation)進行周面絕緣,只讓端部裸露導電。為獲得精密的倒錐微孔,本研究提出「加速度精密電解加工技術」電極於微孔內以一固定的加速度,由下而上進給,經由電極進給速度緩增,使微孔孔壁的電場強度由大逐漸變小,故孔壁的金屬溶解率(Metal Dissolution Rate, MDR)隨之緩降,進而創成倒錐微孔。並且,微孔中的電解液採由下而上的方向流動,以維持電解液濃度的一致性,使成形具高一致性孔壁的倒錐微孔。實驗結果顯示,電極以加速度1.0及2.0 m/s2於孔內進給時,可創造出0.09及0.02錐率的倒錐微孔,且微孔的表面粗糙度Ra小於 0.8 m,符合商用(柴油引擎)噴嘴微孔的標準。成形的倒錐微孔接以「二流體噴嘴」進行測試,發現在氣體壓力0.12 MPa及液體壓力0.04 MPa條件下,因錐孔兩端直徑的差異,能使錐率0.02和0.09的微孔分別獲得23°及31°的霧化角度,證實本研究所提出的「加速度精密電解加工法」,著實能成形精密倒錐微孔,此項技術深具商業化價值。

    This study presents the development of an Acceleration Precision Electro-Chemical Machining (A-PECM) technology to create a micronozzle with an inverted tapered microhole which is applied for the pharmaceutical coating in the biomedicine, fuel injector spray in the diesel engine, and wet etching process in the semiconductor industry. To exactly align between the drilled microhole and the ECM’s microelectrode, an in-situ ECM (Electro Chemical machining) is proposed in this study and set up on the developed tabletop micro-electrolytic machining system. A solid tungsten carbide rod with  0.1 mm in diameter is employed as the microelectrode during ECM process. To obtain an electric field distribution with highly controllable, a peripheral insulation where the periphery of the microelectrode is clothed by the epoxy resin only leaving the end exposed to conduct electricity is recommended in this experiment. The A-PECM process, by which the electrode is fed from the bottom to the top in the hole with a constant and slow acceleration, is conducted on the tabletop micro-electrolytic machining system. The electrode’s feed-rate is gradually increased resulting in the electric field strength of electrolysis is gradually decreased which means the metal dissolution rate (MDR) is gradually reduced, thus creating an inverted tapered microhole. Moreover, the electrolyte maintains the consistency of the electrolyte concentration and flows designed from the bottom to the top of the microhole, thereby produces the microhole with highly uniform hole-wall. Experimental results show that the microholes with the 0.09 and 0.02 inverted taper rate can be precisely finished when using the acceleration of 1.0 and 2.0 m/s2, respectively. The surface roughness with Ra<0.8 m on the hole-wall can be finished which meets the demand for the commercial (diesel engine) nozzle microhole. The formed inverted tapered microholes were tested through a "two-fluid nozzle". It was found that the atomization angles of 23° and 31° can be successfully achieved when using the microholes with an inverted taper rate of 0.02 and 0.09, respectively and the conditions of gas pressure of 0.12 MPa and liquid pressure of 0.04 MPa. It is confirmed that the proposed A-PECM process can indeed form precision inverted tapered microhole, and this technology has great commercial value.

    摘要 i Abstract ii 致謝 iii 目錄 iv 表目錄 vii 圖目錄 ix 符號說明 xiv 第一章 緒論 1 1.1前言 1 1.2文獻回顧 2 1.2.1微孔加工相關文獻探討 2 1.2.2精微電解加工相關文獻探討 6 1.2.3現有精微電解設備發展與應用 10 1.3研究動機 11 1.4研究目的 13 1.5研究方法 15 第二章 實驗原理 18 2.1電解加工原理 18 2.2電解加工特性曲線 24 2.3霧化原理 26 2.4類鑽膜特性與成形 30 2.5電著塗裝原理 34 第三章 實驗所需設備及材料 37 3.1製造設備 37 3.1.1 CNC立式綜合加工機 37 3.1.2 CNC線切割放電加工機 37 3.1.3 CNC精微雕模放電加工機 38 3.1.4平面磨床 39 3.2量測設備 40 3.2.1掃描式電子顯微鏡 40 3.2.2 光學顯微鏡 40 3.2.3 雷射共軛焦顯微鏡 41 3.3實驗材料 42 3.3.1 鎳鉻鉬鋼(Ni-Cr-Mo alloy steel) 42 3.3.2 碳化鎢鑽頭與電極 43 3.3.3 硝酸鈉電解液(NaNO3) 44 第四章 實驗系統建構 46 4.1精微電解加工系統設計開發 46 4.2電解液流路規劃與測試 54 4.2.1電解液順流對微孔影響 54 4.2.2電解液逆流對微孔影響 56 4.3微孔鑽削加工實驗 58 第五章 倒錐式微孔電解加工實驗 63 5.1電解用微細電極側邊絕緣比較 63 5.1.1絕緣漆包覆電極 64 5.1.2類鑽鍍膜(DLC)絕緣電極 66 5.1.3電著(EPD coating)絕緣電極 69 5.2電極旋轉電解實驗 75 5.3定電流電解倒錐微孔實驗 79 5.4電極移動速度對倒錐微孔錐率影響 83 第六章 倒錐微孔噴嘴霧化驗證 97 6.1 倒錐微孔噴嘴實驗驗證 97 6.2 倒錐微孔噴嘴霧化效果實驗 101 6.3 實驗結果探討 106 第七章 結論與未來展望 108 7.1結論 108 7.2研究成果 109 7.3研究貢獻 110 7.4未來展望 111 參考文獻 112 附錄 120 附錄A 旋轉軸於不同轉數下Z軸平台位置之回饋誤差 120 附錄B Z軸位移平台等加速度運動速度變化 122

    1. I. Takahiro, R. Sawada, E. Higurashi, 2000. Fabrication of micro IC probe for LSI testing. Sensors and Actuators A: Physical, 80, 126-131.
    2. S. Garg, P.W. Serruys, 2010. Coronary stents: looking forward. Journal of the American College of Cardiology, 56, 43-78.
    3. 中華民國行政院環保保護署,2017,汙染源版排放量分類統計表,https://teds.epa.gov.tw
    4. Statista, Projected light vehicle sales in the United States from 2019 to 2025,https://www.statista.com
    5. Statista, Global Hybrid Vehicle Market-Analysis of Growth, Trends and Forecast, https://www.statista.com
    6. S. Baik, J. Blanchard, M. Corradini, 2001. Development of Micro-Diesel Injector Nozzles via MEMS Technology and Effects on Spray Characteristics. Society of Automotive Engineers, 110, 381-388.
    7. Y. Huang, B. Rubinsky, 2003. Flow-through micro-electroporation chip for high efficiency single-cell genetic manipulation. Sensors and Actuators A: Physical, 104, 205-212.
    8. W.K. Schomburg, J. Vollmer, B. Biistgens, J. Fahrenberg, H. Hein, W. Menz, 1994. Microfluidic components in LIGA technique. Journal of Micromechanics and Microengineering, 4, 186-191.
    9. C. Diver, J. Atkinson, H.J. Helml, L. Li, 2004. Micro-EDM drilling of tapered holes for industrial applications. Journal of Materials Processing Technology, 149, 296-303.
    10. S. Nikumb, Q. Chen, C. Li, H. Reshef, H.Y. Zheng, H. Qiu, D. Low, 2005. Precision glass machining, drilling and profile cutting by short pulse lasers. Thin Solid Films, 477, 216-221.
    11. F.Z. Fang, L.J. Chen, 2000. Ultra-Precision Cutting for ZKN7 Glass. CIRP Annals Manufacturing Technology, 49, 17-20.
    12. R. Yang, Y.S. Yu, C. Chen, Q.D. Chen, H.B. Sun, 2011. Rapid fabrication of microhole array structured optical fibers. Optics Letters, 36, 3879-3881.
    13. D.J. Kim, S.M. Yi, Y.S. Lee, C.N. Chu, 2006. Straight hole micro EDM with a cylindrical tool using a variable capacitance method accompanied by ultrasonic vibration. Journal of Micromechanics and Microengineering, 16, 1092-1097.
    14. S. Plaza, J.A. Sanchez, E. Perez, R. Gil, B. Izquierdo, N. Ortega, I. Pombo, 2014. Experimental study on micro EDM-drilling of Ti6Al4V using helical electrode. Journal of the International Societies for Precision Engineering and Nanotechnology, 38, 821-827.
    15. M.S. Park, C.N. Chu, 2007. Micro-electrochemical machining using multiple tool electrodes. Journal of Micromechanics and Microengineering, 17, 1451-1457.
    16. Z. Zeng, Y. Wang, Z. Wang, D. Shan, X. He, 2012. A study of micro-EDM and micro-ECM combined milling for 3D metallic micro-structures. Journal of the International Societies for Precision Engineering and Nanotechnology, 36, 500-509.
    17. T. Masuzawa, 2001. Fundamental of micro-EDM technology are summarized and the state of the art of the technology is overviewed. Proceedings of the 13th international symposium for electro-machining ISEM XIII, 11, 3-15.
    18. J. Kozak, K.P. Rajurkar, Y. Makkar, 2004. Selected problems of micro-electrochemical machining. Journal of Materials Processing Technology, 149, 426-431.
    19. C.H. Jo, B.H. Kim, H.S. Shin, D.K. Chung, M.H. Kwon, C.N. Chu, 2008. Micro electrochemical machining for complex internal micro features. International Conference on Smart Manufacturing Application, 247-250.
    20. L. Yong, H. Ruiqin, 2013. Micro Electrochemical Machining for Tapered Holes of Fuel Jet Nozzles. Procedia CIRP, 6, 395-400.
    21. F. Xiaolong, Z. Pengfei, Z. Yongbin, Q. Ningsong, Z. Di, 2016. Enhancement of performance of wire electrochemical micromachining using a rotary helical electrode. Journal of Materials Processing Technology, 227, 129-137.
    22. D. Mi, W. Natsu, 2017. Design of ECM tool electrode with controlled conductive area ratio for holes with complex internal features. Journal of the International Societies for Precision Engineering and Nanotechnology, 47, 54-61.
    23. G. Liu, Y. Li, Q. Kong, H. Tong, 2017. Research on ECM process of micro holes with internal features. Journal of the International Societies for Precision Engineering and Nanotechnology, 47, 508-515.
    24. 蘇州率爾捷電機,http://szsejjd.maijichuang.net
    25. 美國Kennametal,https://www.kennametal.com
    26. K.P. Rajurkar, J. Kozak, B. Wei, J. A. McGeough, 1993. Study of Pulse Electrochemical Machining Characteristics. CIRP Annals Manufacturing Technology, 42, 231-234.
    27. 美國EMAG,https://www.emag.com
    28. 楊顯,2002,燃料電池應用與產業發展狀況,綠基會通訊,2-3。
    29. Y. Yang, W. Natsu, W. Zhao, 2011. Realization of eco-friendly electrochemical micromachining using mineral water as an electrolyte. Journal of the International Societies for Precision Engineering and Nanotechnology, 35, 204-213.
    30. C. Tobin, 2016. Uncommon-rail injection: look behind closed doors at S&S diesel motorsports. Diesel World, https://www.dieselworldmag.com
    31. S.S. Kumar, S.S. Hiremath, 2016. A Review on Abrasive Flow Machining (AFM). Procedia Technology, 25, 1297-1304.
    32. M. Sen, H.S. Shan, 2005. A review of electrochemical macro- to micro-hole drilling processes. International Journal of Machine Tools and Manufacture, 45, 137-152.
    33. R.J. Leese, A. Ivanov, 2016. Electrochemical micromachining: An introduction. Advances in Mechanical Engineering, 8, 1-13.
    34. F. Brusiani, S. Falfari, P. Pelloni, 2014. Influence of the Diesel Injector Hole Geometry on the Flow Conditions Emerging from the Nozzle. Energy Procedia, 45, 749-758.
    35. 黃培元,2019,非傳統加工應用,台灣大昌華嘉股份有限公司,125-168。
    36. 褚晴暉,2012,結構件為什麼會斷裂,科學發展,473期,54-57。
    37. C. Wagner, 1951. Theoretical analysis of the current density distribution in electrolytic cells. Journal of the Electrochemical Society, 98, 116-128.
    38. D. Hodko, 2001. Apparatus and Method for Electroplating or Electroetching a Substrate. US Patent Application.
    39. 田福助,1987,電化學理論與應用,高立圖書有限公司,505-506.
    40. A. Rebschläger, R.K ollmannsperger, D. Bähre, 2014. Video based process observations of the pulse electrochemical machining process at high current densities and small gaps. Procedia CIRP, 14, 418-423.
    41. F. Klocke, M. Zeis, S. Harst, A. Klink, D. Veselovac, M. Baumgärtner, 2013. Modeling and Simulation of the Electrochemical Machining (ECM) Material Removal Process for the Manufacture of Aero Engine Components. Procedia CIRP, 8, 265-270.
    42. 蘇癸陽,1999,實用電鍍理論與實際,復文出版社,96-98。
    43. 夏恒,2015,電解加工の基礎理論と実際,精密工学会誌,81卷,317-322。
    44. 陳裕豐,1999,高潔淨閥件之流道表面處理-電解拋光(EP)技術,機械工業雜誌,198期,230-240.
    45. S.J. Lee, Y.M. Lee, M.F. Du, 2003. The polishing mechanism of electrochemical mechanical polishing technology. Journal of Materials Processing Technology, 140, 280-286.
    46. Y.A. Cengel, J.M. Cimbala, 2007. Fluid Mechanics: Fundamentals and Applications. Mcgraw-Hill, 185-194.
    47. 鄭喬鴻,2012,噴霧液滴粒徑與流場特性分析,國立中山大學機械與機電工程學系,碩士論文。
    48. 侯凌雲,2007,噴嘴技術手冊,中國石化出版社,63-65。
    49. Y.A. Cengel, J.M. Cimbala, 2007. Fluid Mechanics: Fundamentals and Applications. Mcgraw-Hill, 322-325.
    50. J.C. Wu, 1981. Theory for Aerodynamic Force and Moment in Viscous Flows. AIAA Journal, 19, 432-441.
    51. H.A. Sodano, D.J. Inman, G. Park, 2004. A Review of Power Harvesting from Vibration Using Piezoelectric Materials. The Shock and Vibration Digest, 36, 197-205.
    52. G. Fredrickson, 2006. Method for using an ultrasonic nozzle to coat a medical appliance. US Patent Application
    53. S. Erickson, Ultra-spray white paper. Ultrasonic Systems, INC
    http://www.ultraspray.com
    54. K. Omer, N. Ashgriz, 2011. Spray Nozzle. Handbook of atomization and sprays, 497-557.
    55. R. Dhand, 2002, Nebulizers that use a vibrating mesh or plate with multiple apertures to generate aerosol, Respiratory Care, 47, 406-416.
    56. T. Ghazanfari, A.M. Elhissi, Z. Ding, K.M. Taylor, 2007. The influence of fluid physicochemical properties on vibrating-mesh nebulization. International journal of pharmaceutics, 339, 103-111.
    57. M. Eslamian, N. Ashgriz, 2011. Swirl T-Jet and Vibrating-Mesh Atomizers. Handbook of atomization and sprays, 755-773.
    58. W. Chen, F. Han, J. Wang, 2018. Influence of pulse waveform on machining accuracy in electrochemical machining. The International Journal of Advanced Manufacturing Technology, 96, 1367-1375.
    59. 王俊堯,類鑽石薄膜技術在模具上之應用,馗鼎奈米科技股份有限公司,http://www.creating-nanotech.com
    60. K. Oohira, 2009. Characteristics and Applications of DLC films. NTN Technical Review, 77, 90-95.
    61. C. Casiraghi, A.C. Ferrari, J. Robertson, 2005. Raman spectroscopy of hydrogenated amorphous carbons, Physical Review B, 72, 1-14
    62. J. Robertson, 2002. Diamond-like amorphous carbon. Materials science and engineering: R: Reports, 37, 129-281.
    63. 薛群基,王立平,2012,類金剛石碳基薄膜材料,北京:科學出版社
    64. O.O. Van der Biest, L.J. Vandeperre, 1999. Electrophoretic deposition of materials. Annual Review of Materials Science, 29, 327-352.
    65. P. Pierce, 1981. The physical chemistry of the cathodic electrodeposition process. Journal of Coatings Technology, 53, 52-67.
    66. 孫蘭新,宋文章,王善勤,2001,塗裝工藝與設備,中國輕工業出版社,155-158。
    67. 台中精機,立式綜合加工機,https://www.victortaichung.com/
    68. 慶鴻機電工業股份有限公司,2008,CNC線切割放電加工機,線切割機保養手冊,B1 edition。
    69. Sodick,NC放電加工機AP1L premium,2008,使用說明書
    70. 福裕事業股份有限公司,平面磨床,https://www.chevaliertw.com/
    71. 掃描式電子顯微鏡,JEOL,http://www.jeol.com/Default.aspx?tabid=36
    72. 工具顯微鏡,漢磊股份有限公司,http://www.aixon.com.tw/
    73. 3D測量雷射共焦顯微鏡,OLYMPUS,http://www.olympus-ims.com
    74. O. Asi, 2006. Failure of a diesel engine injector nozzle by cavitation damage. Engineering Failure Analysis, 13, 1126-1133.
    75. 鎳鉻鉬合金鋼,鉅鋒特殊鋼股份有限公司,https://www.jfs-steel.com/zh-TW/index.html
    76. N. Hiroshima, H. Hatta, M. Koyama, J. Yoshimura, Y. Nagura, K. Goto, Y. Kogo, 2016. Spin test of three-dimensional composite rotor for flywheel energy storage system. Composite Structures, 136, 626-634.
    77. J.F. Shackelford, W. Alexander, 2001. Materials science and Engineering handbook, 472-533.
    78. 田福助,1987,電化學理論與應用,高立圖書有限公司,507-508.
    79. A. Canas, M.J. Ariza, J. Benavente, 2002. A comparison of electrochemical and electrokinetic parameters determined for cellophane membranes in contact with NaCl and NaNO3 solutions. J Colloid Interface Sci, 246, 150-156.
    80. 硝酸鈉,第一化工,https://shop.dechemical.com.tw/index.php
    81. 日商駿河精機股份有限公司,BSS26-100C45,http://tw.surugaseiki.com
    82. Aerotech, AVL125 Series Vertical Translation Stage, 478-481.
    83. NAKANISHI, 2011. Motors & Spindles BM-320, 2-13.
    84. NAKANISHI, 2011. iSpeed3 operation manual, 6.
    85. 徐啟敏,2006,不鏽鋼304之微細孔鑽削特性與毛邊去除加工之相關研究,國立台北科技大學製造科技研究所,碩士論文。
    86. 日進工具株式會社,2013,ENDMILL CATALOG,日進工具株式會社,426-428。
    87. Extrude Hone, http://extrudehone.com/
    88. A. Brusilovski, 2010. Dielectric Coating of Cathodes for Microfabrication Using Electrochemical Method. Journal of Manufacturing Science and Engineering, 132
    89. M. Sen, H.S. Shan, 2005. A review of electrochemical macro- to micro-hole drilling processes. International Journal of Machine Tools and Manufacture, 45, 137-152.
    90. 孫蘭新,宋文章,王善勤,2001,塗裝工藝與設備,中國輕工業出版社,149-154。

    無法下載圖示 電子全文延後公開
    2025/12/31
    QR CODE