簡易檢索 / 詳目顯示

研究生: 魏嘉甫
論文名稱: 不同結構的二硫化錫對鈉離子電池影響之研究
Structure-Dependent Na Storage Properties of Tin Sulfide as Anode Material
指導教授: 陳家俊
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 76
中文關鍵詞: 鈉離子電池陽極材料二硫化錫
英文關鍵詞: Sodium ion battery, Anode material, Tin(IV) sulfide
論文種類: 學術論文
相關次數: 點閱:310下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 錫、二氧化錫、二硫化錫是非常有潛力的陽極材料在鈉離子電池應用上,因為有較高的電容量、價格便宜、對環境沒有汙染。錫雖然擁有較高的理論電容量,但是循環穩定性不佳,而二氧化錫主要的問題就是第一圈不可逆電容量很大,造成電容量不高,通常硫化物的不可逆電容量都比氧化物來得小,另外硫的原子量較錫輕且所形成的二硫化錫可減緩體積膨脹的問題,所以二硫化錫的第一圈不可逆電容量較小且循環穩定性較佳,因此本研究選擇用二硫化錫。
    本研究主要是先探討不同形狀的二硫化錫在電池表現上有無差別,包括花型結構(Flower-shape)、奈米板狀(Nanoplates)、奈米粒子(Nanoparticles),同時也與Bulk二硫化錫做比較。在經過不同的形狀結構測試下,花型(Flower-shape)的二硫化錫表現上較佳,不過約在充放電30圈後,電容量衰退很快,因此為了解決循環穩定性不佳的這個問題,之後用花型二硫化錫來分別進行不同黏著劑及電解液的探討,試圖改善循環穩定性的問題,黏著劑包括Polyvinylidene fluoride (PVDF)、Sodium carboxymethyl cellulose(Na-CMC)、Polyacrylic acid (PAA),而電解液包括NaClO4/EC+PC、NaClO4/EC+DEC、NaClO4/PC、NaClO4/5% FEC+EC+PC,結果在黏著劑方面使用Sodium carboxy- methyl cellulose(Na-CMC)、電解液使用NaClO4/5% FEC+EC+PC分別有較佳的表現。
    在最佳條件測試下,花型二硫化錫經過充放電50圈後電容量約還有400 mAhg-1左右,因此花型二硫化錫在鈉離子電池未來開發應用上或許是一個合適的材料。

    Tin compounds such as Sn, SnO2, and SnS2 are promising anode materials for sodium ion battery, due to their high theoretical gravimetric capacity, low cost, and eco-friendliness. However, Sn has poor cyclic stability and SnO2 have intrinsic problem such as low first cycle efficiency (30-40%). Moreover, sulphides formation is typically more reversible than oxides, resulting in higher first cycle efficiency than oxide materials. Thus, SnS2 has chosen suitable material for improved first cycle efficiency that can give higher capacity at higher current because of light weight of the S atoms and expected improvement in mechanical stability due to smaller volume change during charge/discharge.
    In our study, first time explore the distinct morphologies of SnS2 including flower, nanoplate, nanoparticle and bulk SnS2 for comparative study of sodium storage properties. During investigation, the SnS2 microflower sample shows best performance compare with others, but SnS2 microflower has problem of fast capacity decay after 30 cycles. Hence, in order to avoid the poor cyclic stability, our courses have been extent to studies of different binders and electrolytes for better performance of SnS2 microflower in sodium ion battery. The different binders and electrolytes are polyvinylidene fluoride (PVDF), sodium carboxymethyl cellulose (Na-CMC), polyacrylic acid (PAA), and NaClO4 contains of EC + PC, EC + DEC, PC, 5% FEC + EC + PC, respectively used here. We found that among them, Na-CMC and NaClO4 contains in 5% FEC + EC+ PC best binders and electrolytes.
    Under optimum conditions, microflower-shaped SnS2 showed capacity of 400 mAhg-1 remained up to 50 cycles; hence, microflower- shaped SnS2 are good candidate anode material for sodium ion battery in commercial exploitation.

    謝誌 I 摘要 II Abstract IV 總目錄 VI 圖表目錄 IX 第一章 緒論與文獻回顧 1 1-1前言 1 1-2鈉離子電池的工作原理介紹 2 1-3鈉離子電池陰極材料 3 1-3-1層狀結構金屬氧化物 3 1-3-2穿隧式氧化物 7 1-3-3磷酸鹽類的材料 9 1-3-4氟化物 12 1-3-5有機化合物 13 1-4 鈉離子電池陽極材料 14 1-4-1碳材類 14 1-4-2合金或金屬 20 1-4-3氧化物 24 1-4-4硫化物 25 1-4-5磷 27 第二章 實驗 29 2-1研究動機 29 2-2儀器設備 31 2-3實驗藥品 32 2-4二硫化錫材料之合成步驟 33 2-4-1花型(Flower shape)二硫化錫 33 2-4-2奈米板狀(Nanoplates)二硫化錫 34 2-4-3奈米粒子(Nanoparticles)二硫化錫 35 2-5材料鑑定與分析 36 2-5-1 XRD粉末繞射分析 36 2-5-2 SEM表面形態分析 36 2-5-3 TEM分析 36 2-6陽極電極製備步驟 37 2-7鈕扣型電池組裝 39 2-8電化學測試 40 2-8-1鈕扣型電池充放電測試 40 2-8-2循環伏安法分析(CV) 40 2-8-3交流阻抗分析 40 第三章 實驗結果與討論 41 3-1二硫化錫材料的鑑定 41 3-2循環伏安法分析 46 3-3不同結構的二硫化錫電化學比較 47 3-4活性材料與Super P不同比例的比較 51 3-5不同黏著劑比較 52 3-6不同電解鹽類及電解液比較 53 3-7最佳條件測試 57 第四章 結論 59 參考文獻 60

    [1] Huilin Pan;Yong-Sheng Hu and Liquan Chen, Energy Environ. Sci., 2013,6, 2338-2360.
    [2] C. Delmas, C. Fouassier and P. Hagenmuller, Physica B+C,1980, 99, 81–85.
    [3] C. Delmas, J. J. Braconnier, C. Fouassier and P. Hagenmuller, Solid State Ionics, 1981, 3–4, 165–169.
    [4] R. Berthelot, D. Carlier and C. Delmas, Nat. Mater., 2011, 10,U74.
    [5] C. Delmas, C. Fouassier and P. Hagenmuller, Physica B+C,1980, 99, 81–85.
    [6] A. Caballero, L. Hernan, J. Morales, L. Sanchez, J. S. Pena and M. A. G. Aranda, J. Mater. Chem., 2002, 12, 1142–1147.
    [7] X. H. Ma, H. L. Chen and G. Ceder, J. Electrochem. Soc.,2011, 158, A1307–A1312.
    [8] S. Komaba, C. Takei, T. Nakayama, A. Ogata and N. Yabuuchi, Electrochem. Commun., 2010, 12, 355–358.
    [9] P. Vassilaras, X. H. Ma, X. Li and G. Ceder, J. Electrochem. Soc., 2013, 160, A207–A211.
    [10] Y. L. Cao, L. F. Xiao, W. Wang, D. W. Choi, Z. M. Nie,J. G. Yu, L. V. Saraf, Z. G. Yang and J. Liu, Adv. Mater.,2011, 23, 3155–3160.
    [11] P. Barpanda, T. Ye, S. Nishimura, S. C. Chung, Y. Yamada,M. Okubo, H. S. Zhou and A. Yamada, Electrochem. Commun., 2012, 24, 116–119.
    [12] H. Kim, I. Park, D. H. Seo, S. Lee, S. W. Kim, W. J. Kwon,Y. U. Park, C. S. Kim, S. Jeon and K. Kang, J. Am. Chem.Soc., 2012, 134, 10369–10372.
    [13] Y. Uebou, T. Kiyabu, S. okada and J.-I. Yamaki, The Reports of Institute of Advanced Materials Study, 2002, 16, 1–5.
    [14] Z. L. Jian, L. Zhao, H. L. Pan, Y. S. Hu, H. Li, W. Chen and L. Q. Chen, Electrochem. Commun., 2012, 14, 86–89.
    [15] Z. L. Jian, W. Z. Han, X. Lu, H. X. Yang, Y.-S. Hu, J. Zhou, Z. B. Zhou, J. Q. Li, W. Chen, D. F. Chen and L. Q. Chen, Adv. Energy Mater., 2013, 3, 156–160.
    [16] A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier and J. B. Goodenough, J. Electrochem. Soc., 1997, 144, 2581–2586.
    [17] D. B. Porter, R. Olazcuaga, C. Delmas, F. Cherkaoui, R. Brochu and G. Leflem, Rev. Chim. Miner., 1980, 17,458–465.
    [18] M. Nishijima, I. D. Gocheva, S. Okada, T. Doi, J. Yamaki and
    T. Nishida, J. Power Sources, 2009, 190, 558–562.
    [19] Y. Yamada, T. Doi, I. Tanaka, S. Okada and J. Yamaki, J. Power Sources, 2011, 196, 4837–4841.
    [20] R. Zhao, L. Zhu, Y. Cao, X. Ai and H. X. Yang, Electrochem. Commun., 2012, 21, 36–38.
    [21] S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh and K. Fujiwara, Adv. Funct. Mater., 2011, 21, 3859–3867.
    [22] D. A. Stevens and J. R. Dahn, J. Electrochem. Soc., 2000, 147, 1271–1273.
    [23] R. Alcántara , P. Lavela , G. F. Ortiz , J. L. Tirado , Electrochem. Solid-State Lett. 2005 , 8 , A222 – A225.
    [24] Yong-Mao Lin, Paul R. Abel, Asha Gupta, John B. Goodenough, Adam Heller, and C. Buddie Mullins, ACS Appl. Mater. Interfaces 2013, 5, 8273−8277.
    [25] Lifen Xiao, Yuliang Cao, Jie Xiao, Wei Wang, Libor Kovarik, Zimin Nie, Jun Liu, Chem. Commun., 2012, 48, 3321–3323.
    [26] Yun-Xiao Wang, Young-Geun Lim, Min-Sik Park, Shu-Lei Chou, Jung Ho Kim, Hua-Kun Liu, Shi-Xue Doub and Young-Jun Kima, J. Mater. Chem. A, 2014, 2, 529–534.
    [27] Denis Y.W. Yu, Petr V. Prikhodchenko, Chad W. Mason, Sudip K. Batabyal, Jenny Gun, Sergey Sladkevich, Alexander G. Medvedev & Ovadia Lev, Nat. Commun. 4:2922 Doi: 10.1038/ncomms3922 (2013).
    [28] Youngjin Kim, Yuwon Park, Aram Choi, Nam-Soon Choi, Jeongsoo Kim, Junesoo Lee, Ji Heon Ryu, Seung M. Oh, and Kyu Tae Lee, Adv. Mater. 2013, 25, 3045–3049.
    [29] Baihua Qu, Chuze Ma, Ge Ji, Chaohe Xu, Jing Xu, Ying Shirley Meng, Taihong Wang, and Jim Yang Lee, Adv. Mater. 2014, DOI: 10.1002/adma.201306314.
    [30] Min He, Li-Xia Yuan and Yun-Hui Huang, RSC Adv., 2013, 3, 3374–3383.
    [31] Huijuan Geng, Yanjie Su, Hao Wei, Minghan Xu, Liangming Wei, Zhi Yang, Yafei Zhang, Materials Letters,111,(2013),204–207.
    [32] Xing-Long Gou, Jun Chen, Pan-Wen Shen, Materials Chemistry and Physics,93,(2005),557–566.
    [33] Alexandre Ponrouch, Elena Marchante, Matthieu Courty, Jean- Marie Tarascon and M. Rosa Palacin, Energy Environ. Sci., 2012, 5, 8572–8583.

    無法下載圖示 本全文未授權公開
    QR CODE