簡易檢索 / 詳目顯示

研究生: 翁得原
Weng, Te-Yuan
論文名稱: 運用手持式裝置優化現地測量之效益評估
Evaluating The Effectiveness of Optimized On-Site Surveying Using Handheld Device
指導教授: 張國楨
Chang, Kuo-Chen
口試委員: 張國楨
Chang, Kuo-Chen
張嘉強
Chang Chia-Chyang
陳俊愷
Chen, Chun-Kai
口試日期: 2024/07/21
學位類別: 碩士
Master
系所名稱: 地理學系空間資訊碩士在職專班
Department of Geography_Continuing Education Master's Program of Geospatial Information Science
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 75
中文關鍵詞: 現地測量優化手持式RTK測量設備手機LiDAR
英文關鍵詞: Field Survey Optimization, Handheld RTK Survey, Smartphone LiDAR
研究方法: 比較研究
DOI URL: http://doi.org/10.6345/NTNU202401462
論文種類: 學術論文
相關次數: 點閱:145下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現地測量是許多產業中重要的工作之一,涵蓋建築、土木工程、城市規劃、環境監測等多個領域,在過去,現地測量方式大多通常依賴於昂貴、笨重的專業測量儀器來進行地面測量和地理空間資訊搜集,傳統測量設備優點成熟可靠,並且通常可以提供較為精確的測量結果,不過仍有存在一些缺點,測量耗費、無法快速進行空間資訊取得,且操作以上設備皆需要專業測量知識及經驗。
    測量科技逐年不斷發展及進步,測量設備越做越輕巧,就連垂手可得的智慧型手機、平板等技術逐漸改變了傳統的現場測量應用方式,不過手持式測量設備必須需完全仰賴人為操作來進行數據擷取,本研究探討建立一套標準操作作業流程,透過流程可讓每位執行的測量人員所產出的成果都是很接近的,誤差值並且可在法規標準範圍內。
    手持式裝置在絕對精度測試上與專業RTK衛星定位儀器進行絕對精度比對驗證,比對結果手持式裝置平面誤差平均小於2公分及高程誤差平均小於1公分以內,另外驗證單一獨立點進行12小時RTK穩定性測量測試,測試結果∆E平均誤差值為2.66公分;∆N平均誤差值為1.89公分;∆N平均誤差值為4.24公分,統整以上驗證數據,手持式裝置可符合專業測量等級儀器設備標準。
    手持式裝置實際至現地進行測量效益驗證,並在同測區進行三組3D掃描作業,三組所產出3D模型資料導入檢核點進行精度驗證,三組3D模型成果絕對精度水平誤差平均2.3公分、垂直誤差平均3公分,相對精度平均誤差值為0.35公分,研究證明若以近距離進行3D掃描作業,手機LiDAR融合影像所產出3D模型成果,相對精度也可達到公分等級,並且在總體執行時間效益上比傳統測量設備約節省三分一以上時間。
    手持式裝置測量固然輕巧方便,亦可優化現地測量作業且精度可符合法規需求,但手持式裝置僅適用小範圍測量應用及有網路訊號且通透環境,若用於更大範圍或惡劣環境之測量需求並不適合,仍建議使用專業測量儀器進行,大範圍測量可建議搭配無人機作為互補,可補足地面掃描無法擷取資訊。

    Field surveying is a crucial task in many industries, including construction, civil en-gineering, urban planning, and environmental monitoring. In the past, field surveying methods have largely relied on expensive, bulky professional survey instruments for ground measurements and geospatial information collection. Traditional survey equipment is reliable and generally provides accurate results. However, these methods still have some drawbacks, such as high costs, slow data acquisition, and the need for specialized knowledge and experience to operate.
    Surveying technology has been continuously evolving, with equipment becoming in-creasingly compact. Technologies such as smartphones and tablets are gradually changing the way traditional field survey applications are conducted. However, handheld survey equipment must rely entirely on manual operation for data acquisition. This study explores the establishment of a standard operating procedure (SOP) to ensure that the results pro-duced by each surveyor are consistent and within regulatory standards.
    In terms of absolute accuracy testing, handheld devices were compared with profes-sional RTK satellite positioning instruments. The comparison results showed that the hor-izontal error of handheld devices averaged less than 2 cm, and the vertical error averaged less than 1 centimeter. Additionally, a single independent point underwent a 12-hour RTK stability measurement test. The test results showed an average error of 2.66 cm for ∆E, 1.89 cm for ∆N, and 4.24 cm for ∆H. These validation data demonstrate that handheld devices meet the standards of professional survey-grade equipment.
    For practical field measurement efficiency verification, three sets of 3D scanning op-erations were performed in the same survey area. The 3D model data from these three sets were imported for accuracy verification against control points. The results showed an av-erage horizontal error of 2.3 cm, a vertical error of 3 cm, and a relative accuracy error of 0.35 cm. The study proved that, when conducting close-range 3D scanning, the 3D mod-els produced by smartphone LiDAR integrated with images can achieve centimeter-level relative accuracy. Additionally, the overall execution time was reduced by more than one-third compared to traditional survey equipment.
    While handheld devices are lightweight and convenient, optimizing field survey op-erations and meeting regulatory accuracy requirements, they are only suitable for small-scale survey applications in areas with network signals and clear environments. They are not suitable for larger areas or harsh environments. For such needs, professional survey instruments are still recommended. For large-scale surveys, it is advisable to complement handheld devices with drones, which can capture information that ground scans cannot.

    第一章 緒論1 第一節 研究動機1 第二節 研究目的3 第二章 文獻探討4 第一節 現階段常用現地測量方式及優缺點比較4 第二節 手持式裝置測量應用探討7 第三章 研究過程與設計10 第一節 研究架構及流程10 第二節 手持式裝置現地測量作業流程規劃11 第三節 現地測量前置規劃準備作業12 第四節 手持式裝置參數設定及數據處理流程31 第五節 手持式裝置VRS-RTK精度驗證35 第六節 手持式裝置現地測量作業執行42 第七節 手持式裝置現地測量成果後處理與展示46 第八節 執行成果驗證及效益評估48 第四章 研究結論與建議53 第一節 研究結果53 第二節 研究建議54 參考文獻56 附錄一、RTK獨立點資料接收測回筆數共5106筆58 附錄二、3D掃描作業數據60 附錄三、PIX4Dmatic軟體資料產製後數據62 附錄四、3D模型絕對精度檢核71 附錄五、現地量測數據72

    邱建華(2019)。應用GNSS-RTK技術在古蹟工程3DLIDAR雷射掃描之研究。國防大學理工學院碩士論文.
    侯凱文(2021)。應用手持式光達儀於市地地籍現況測量。國立政治大學地政學系碩士論文.
    吳峻宇、王敏雄、梁旭文、鄭彩堂(2014)。VBS-RTK定位技術在公共管線測量實務應用與精度控制之研究。內政部國土測繪中心自行研究報告.
    李金輝、梁崇智、曾冠凱(2023)。以智慧型手機光達系統輔助地籍測量實地界址辨識應用評估—以草屯鎮地籍圖重測區為例。南投縣政府112年度研究報告.
    陳立璋(2023) 。利用光達及無人機技術輔助3D地籍測量之研究。國立臺灣師範大學地理學系空間資訊碩士論文.
    李哲宇、莊承穎、陳振宇、高百毅(2022) 。iPhone生成數位孿生於水土保持工程之應用性探討。2022中華水土保持學會討會.
    陳郁涵(2022)。運用手機光達建置二維平面圖與三維場景之效益研究。國防大學理工學院環境資訊及工程學系碩士論文.
    李哲宇、莊承穎、陳振宇、高百毅(2022). iPhone生成數位孿生於水土保持工程之應用性探討。2022中華水土保持學會研討會.
    Yang, Chen-Chia(2022). iPad Pro LiDAR 掃描精度分析及 Scan-to-BIM 應用。國立陽明交通大學土木工程研究所碩士論文.
    國土測繪中心(2021)採用電子化全球衛星即時動態定位系統辦理控制測量作業手冊標準.
    國土測繪中心(2021) 三維國家底圖及相關資料標準之建置與規劃(三維建物模型篇).

    Smith, J., & Doe, J. (2021). Mobile Technology in Field Surveys. Journal of Field Technology, 12(3), 45-56.
    Green, M., & White, L. (2024). Evaluation of Mobile Devices for Environmental Monitoring. Environmental Monitoring and Assessment, 196(2), 123-139.
    Davis, M., & Lee, L. (2019). Handheld devices for geological fieldwork: Benefits and limitations. Geological Survey Journal, 34(1), 112-129.
    Smith, J., & Doe, J. (2021). Field measurement methods using handheld devices. Journal of Measurement Science, 45(2), 123-145.

    農村發展及水土保持署技術研究發展平台第62期電子報(2022)。人人都可創造
    數位孿生-手機3D掃描技術的現況與發展,取自:https://tech.ardswc.gov.tw/EPaper/Home/EPaper?PaperID=c746e5a3-9528-494c-9698-712605de2b8b
    ViDoc RTK rover,取自:https://www.pix4d.com/product/rtk/
    PIX4Dcatch,取自: https://www.pix4d.com/product/pix4dcatch/
    PIX4Dmatic,取自https://www.pix4d.com/product/pix4dmatic-large-scale-photogrammetry-software/
    Apple官網,取自https://www.apple.com/tw/iphone-15-pro/specs/
    Note.産業用モバイルスキャンの実証実験.CRAFTCOM株式会社。取自:
    https://note.com/okiyamatatsuya/n/n2490e6d22a91
    內政部國土測繪中心。e-GNSS即時動態定位系統現行收費標準,取自
    https://egnss.nlsc.gov.tw/content.aspx?i=20150625102159760
    內政部國土測繪中心多維度服務平台,取自:
    https://3dmaps.nlsc.gov.tw/?page=%E4%B8%89%E7%B6%AD%E5%BB%BA%E7%89%25
    瘋先生。iPhone LiDAR 到底可以做什麼?,取自:
    https://mrmad.com.tw/iphone-lidar
    CADGET HACKS。You're Using Lidar on Your iPhone and iPad — And You Don't
    Even Know It,取自: https://apple.gadgethacks.com/how-to/youre-using-lidar-your-iphone-and-ipad-and-you-dont-even-know-0385523/

    下載圖示
    QR CODE