研究生: |
黃水德 Huang, Shuei-De |
---|---|
論文名稱: |
單層石墨烯表面的接觸起電現象:穿隧摩擦起電、摩擦化學與結構缺陷間的交互作用 Contact electrification on single-layer graphene: the interplay between tunneling triboelectricity, tribochemistry, and structural defects |
指導教授: |
邱顯智
Chiu, Hsiang-Chih |
口試委員: | 莊程豪 張宜仁 |
口試日期: | 2021/07/09 |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 40 |
中文關鍵詞: | 石墨烯 、摩擦起電 、摩擦化學 、原子力顯微鏡 、奈米摩擦發電機 |
英文關鍵詞: | graphene, triboelectricity, tribochemistry, atomic force microscopy (AFM), triboelectric nanogenerators (TENG) |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202100768 |
論文種類: | 學術論文 |
相關次數: | 點閱:204 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們使用原子力顯微鏡(atomic force microscopy, AFM)及其衍伸技術研究了二氧化矽基板上的單層石墨烯表面的接觸摩擦起電效應。我們藉由使用施加了偏壓的原子力顯微鏡探針摩擦單層石墨烯表面,並觀察摩擦之後的石墨烯表面電位會如何隨著所加偏壓的大小、極性、環境溼度與石墨烯的結構缺陷而變化。我們發現在摩擦的過程中,探針上的電荷可以經由石墨烯的結構缺陷穿隧進入並累積在石墨烯與下層二氧化矽基板之間。我們使用克氏探針表面電位顯微鏡(Kelvin Probe Force Microscopy, KPFM)量測表面電位以監測累積電荷隨時間的改變。當我們使用+5V偏壓施加在探針上摩擦石墨烯後,摩擦與未摩擦區域表面電位差可以高達500mV,並表面電位會隨著時間逐漸降低,於3500分鐘後約穩定在150mV。然而,當我們在摩擦時使用負偏壓時,摩擦後的表面電位差會快速在500分鐘後消散到接近零,然後漸漸轉為正電位。這是因為當我們使用加了偏壓的原子力顯微鏡探針在環境條件下摩擦單層石墨烯時,其表面會產生摩擦化學反應,在石墨烯表面產生化學官能基,進而影響到摩擦後的表面電位。此外,我們也使用了氬氣電漿來處理石墨烯,以產生不同結構缺陷程度的單層石墨烯樣品。我們並發現結構缺陷愈多的石墨烯,其表面電位在摩擦後消散的愈快。我們的研究可以將石墨烯應用到新穎的奈米摩擦發電機(triboelectric nano-generators, TENG)之中。
We investigated the effect of contact electrification on the surface of single-layer graphene (SLG) deposited on silica employing atomic force microscopy (AFM)-based techniques. By rubbing a conductive AFM tip on the SLG surface with an applied electric bias, the triboelectric charges can tunnel through the structural defects of SLG, and trapped at the interface of SLG and the underlying silica substrate. Kelvin Probe Force Microscopy (KPFM) was used to monitor the evolution of surface potential due to the charge accumulation in this system as a function of time. We found that when a positive bias with +5V was applied during rubbing, the surface potential different between rubbed and unrubbed area can be as high as 500 mV. The observed surface potential different were found to gradually decrease with time, and became nearly a constant at 150 mV after 3500 minutes. On the contrary, when the applied bias was negative, the surface potential difference decreased to almost zero quickly after 500 minutes. Tribochemical reactions on SLG can occur when the surface was rubbed by the AFM probe with an applied electric bias in ambient conditions. Surface oxidation and hydrogenation, which are known to occur respectively when a negative or positive bias was applied to the tip during rubbing, may attribute to the observed differences in tunneling triboelectric behaviors. In addition, we treated the SLG with the argon plasma to generate different amount of structural defects in SLG and found that the degrees of structural defects have substantial influence on the observed tunneling triboelectric effect. Our results may find applications of graphene in the novel triboelectric nano-generators (TENG).
1 Geim, A. K. Graphene: Status and Prospects. Science 324, 1530-1534, doi:10.1126/science.1158877 (2009).
2 Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Materials 6, 183-191, doi:10.1038/nmat1849 (2007).
3 Chandrashekar, B. N. et al. Roll-to-Roll Green Transfer of CVD Graphene onto Plastic for a Transparent and Flexible Triboelectric Nanogenerator. Advanced Materials 27, 5210-5216, doi:doi:10.1002/adma.201502560 (2015).
4 Kim, S. et al. Transparent Flexible Graphene Triboelectric Nanogenerators. Advanced Materials 26, 3918-3925, doi:https://doi.org/10.1002/adma.201400172 (2014).
5 Chen, H. et al. Crumpled Graphene Triboelectric Nanogenerators: Smaller Devices with Higher Output Performance. Advanced Materials Technologies 2, 1700044, doi:10.1002/admt.201700044 (2017).
6 Kim, S. et al. Rewritable ghost floating gates by tunnelling triboelectrification for two-dimensional electronics. Nat Commun 8, 15891, doi:10.1038/ncomms15891 (2017).
7 Nemes-Incze, P. et al. Electronic states of disordered grain boundaries in graphene prepared by chemical vapor deposition. Carbon 64, 178-186, doi:https://doi.org/10.1016/j.carbon.2013.07.050 (2013).
8 Koepke, J. C. et al. Atomic-Scale Evidence for Potential Barriers and Strong Carrier Scattering at Graphene Grain Boundaries: A Scanning Tunneling Microscopy Study. ACS Nano 7, 75-86, doi:10.1021/nn302064p (2013).
9 Byun, I.-S. et al. Nanoscale Lithography on Monolayer Graphene Using Hydrogenation and Oxidation. ACS Nano 5, 6417-6424, doi:10.1021/nn201601m (2011).
10 Byun, I.-S. et al. Electrical control of nanoscale functionalization in graphene by the scanning probe technique. NPG Asia Materials 6, e102-e102, doi:10.1038/am.2014.24 (2014).
11 Kumar, P. V., Bernardi, M. & Grossman, J. C. The Impact of Functionalization on the Stability, Work Function, and Photoluminescence of Reduced Graphene Oxide. ACS Nano 7, 1638-1645, doi:10.1021/nn305507p (2013).
12 Jiao, N. et al. Surface work function of chemically derived graphene: A first-principles study. Physics Letters A 377, 1760-1765, doi:10.1016/j.physleta.2013.05.005 (2013).
13 Naghdi, S., Sanchez-Arriaga, G. & Rhee, K. Y. Tuning the work function of graphene toward application as anode and cathode. Journal of Alloys and Compounds 805, 1117-1134, doi:10.1016/j.jallcom.2019.07.187 (2019).
14 Sygellou, L., Paterakis, G., Galiotis, C. & Tasis, D. Work Function Tuning of Reduced Graphene Oxide Thin Films. The Journal of Physical Chemistry C 120, 281-290, doi:10.1021/acs.jpcc.5b09234 (2015).
15 Knoll, M. & Ruska, E. Das Elektronenmikroskop. Zeitschrift für Physik 78, 318-339, doi:10.1007/BF01342199 (1932).
16 Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. Surface Studies by Scanning Tunneling Microscopy. Physical Review Letters 49, 57-61, doi:10.1103/physrevlett.49.57 (1982).
17 Tersoff, J. & Hamann, D. R. Theory and Application for the Scanning Tunneling Microscope. Physical Review Letters 50, 1998-2001, doi:10.1103/physrevlett.50.1998 (1983).
18 Binnig, G. & Rohrer, H. Scanning tunneling microscopy—from birth to adolescence. Reviews of Modern Physics 59, 615-625, doi:10.1103/revmodphys.59.615 (1987).
19 Binnig, G., Quate, C. F. & Gerber, C. Atomic Force Microscope. Physical Review Letters 56, 930-933, doi:10.1103/physrevlett.56.930 (1986).
20 Giessibl, F. J. Advances in atomic force microscopy. Reviews of Modern Physics 75, 949-983, doi:10.1103/revmodphys.75.949 (2003).
21 Mahaffy, R. E., Shih, C. K., Mackintosh, F. C. & Käs, J. Scanning Probe-Based Frequency-Dependent Microrheology of Polymer Gels and Biological Cells. Physical Review Letters 85, 880-883, doi:10.1103/physrevlett.85.880 (2000).
22 Weisenhorn, A. L., Maivald, P., Butt, H. J. & Hansma, P. K. Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope. Physical Review B 45, 11226-11232, doi:10.1103/physrevb.45.11226 (1992).
23 Butt, H.-J., Cappella, B. & Kappl, M. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface Science Reports 59, 1-152, doi:10.1016/j.surfrep.2005.08.003 (2005).
24 Hutter, J. L. & Bechhoefer, J. Calibration of atomic‐force microscope tips. Review of Scientific Instruments 64, 1868-1873, doi:10.1063/1.1143970 (1993).
25 Sader, J. E., Chon, J. W. M. & Mulvaney, P. Calibration of rectangular atomic force microscope cantilevers. Review of Scientific Instruments 70, 3967-3969, doi:10.1063/1.1150021 (1999).
26 Sader, J. E. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. Journal of Applied Physics 84, 64-76, doi:10.1063/1.368002 (1998).
27 Chon, J. W. M., Mulvaney, P. & Sader, J. E. Experimental validation of theoretical models for the frequency response of atomic force microscope cantilever beams immersed in fluids. Journal of Applied Physics 87, 3978-3988, doi:10.1063/1.372455 (2000).
28 Sader, J. E., Pacifico, J., Green, C. P. & Mulvaney, P. General scaling law for stiffness measurement of small bodies with applications to the atomic force microscope. Journal of Applied Physics 97, 124903, doi:10.1063/1.1935133 (2005).
29 Sader, J. E. et al. Spring constant calibration of atomic force microscope cantilevers of arbitrary shape. Review of Scientific Instruments 83, 103705, doi:10.1063/1.4757398 (2012).
30 Wang, Y.-H. et al. Roles of structural and chemical defects in graphene on quenching of nearby fluorophores. Carbon 165, 412-420, doi:https://doi.org/10.1016/j.carbon.2020.04.067 (2020).
31 Kang, J., Shin, D., Bae, S. & Hong, B. H. Graphene transfer: key for applications. Nanoscale 4, 5527-5537, doi:10.1039/c2nr31317k (2012).
32 Her, M., Beams, R. & Novotny, L. Graphene transfer with reduced residue. Physics Letters A 377, 1455-1458, doi:https://doi.org/10.1016/j.physleta.2013.04.015 (2013).
33 Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706-710, doi:10.1038/nature07719 (2009).
34 Lin, Y. C. et al. Graphene annealing: how clean can it be? Nano Lett 12, 414-419, doi:10.1021/nl203733r (2012).
35 Bosca, A., Pedros, J., Martinez, J., Palacios, T. & Calle, F. Automatic graphene transfer system for improved material quality and efficiency. Sci Rep 6, 21676, doi:10.1038/srep21676 (2016).
36 Zhang, G. et al. Versatile Polymer-Free Graphene Transfer Method and Applications. ACS Appl Mater Interfaces 8, 8008-8016, doi:10.1021/acsami.6b00681 (2016).
37 Verguts, K., Coroa, J., Huyghebaert, C., De Gendt, S. & Brems, S. Graphene delamination using 'electrochemical methods': an ion intercalation effect. Nanoscale 10, 5515-5521, doi:10.1039/c8nr00335a (2018).
38 de la Rosa, C. J. L. et al. Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on Cu. Applied Physics Letters 102, doi:10.1063/1.4775583 (2013).
39 Van Ngoc, H., Qian, Y., Han, S. K. & Kang, D. J. PMMA-Etching-Free Transfer of Wafer-scale Chemical Vapor Deposition Two-dimensional Atomic Crystal by a Water Soluble Polyvinyl Alcohol Polymer Method. Sci Rep 6, 33096, doi:10.1038/srep33096 (2016).
40 Leong, W. S. et al. Paraffin-enabled graphene transfer. Nat Commun 10, 867, doi:10.1038/s41467-019-08813-x (2019).
41 Riedo, E., Lévy, F. & Brune, H. Kinetics of Capillary Condensation in Nanoscopic Sliding Friction. Physical Review Letters 88, 185505, doi:10.1103/PhysRevLett.88.185505 (2002).
42 Greiner, C., Felts, J. R., Dai, Z., King, W. P. & Carpick, R. W. Controlling Nanoscale Friction through the Competition between Capillary Adsorption and Thermally Activated Sliding. ACS Nano 6, 4305-4313, doi:10.1021/nn300869w (2012).
43 Bocquet, L., Charlaix, E., Ciliberto, S. & Crassous, J. Moisture-induced ageing in granular media and the kinetics of capillary condensation. Nature 396, 735-737, doi:10.1038/25492 (1998).
44 Lucchese, M. M. et al. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48, 1592-1597, doi:10.1016/j.carbon.2009.12.057 (2010).
45 Ni, Z., Wang, Y., Yu, T. & Shen, Z. Raman spectroscopy and imaging of graphene. Nano Research 1, 273-291, doi:10.1007/s12274-008-8036-1 (2010).
46 Malard, L. M., Pimenta, M. A., Dresselhaus, G. & Dresselhaus, M. S. Raman spectroscopy in graphene. Physics Reports 473, 51-87, doi:10.1016/j.physrep.2009.02.003 (2009).
47 Wu, J. B., Lin, M. L., Cong, X., Liu, H. N. & Tan, P. H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem Soc Rev 47, 1822-1873, doi:10.1039/c6cs00915h (2018).
48 Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys Rev Lett 97, 187401, doi:10.1103/PhysRevLett.97.187401 (2006).
49 Ko, C. H., Klauser, R., Wei, D. H., Chan, H. H. & Chuang, T. J. The Soft X-ray Scanning Photoemission Microscopy Project at SRRC. J Synchrotron Radiat 5, 299-304, doi:10.1107/s0909049597018955 (1998).
50 Hong, I. H. et al. Performance of the SRRC scanning photoelectron microscope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 467-468, 905-908, doi:https://doi.org/10.1016/S0168-9002(01)00516-2 (2001).
51 KLAUSER, R. et al. ZONE-PLATE-BASED SCANNING PHOTOELECTRON MICROSCOPY AT SRRC: PERFORMANCE AND APPLICATIONS. Surface Review and Letters 09, 213-222, doi:10.1142/s0218625x0200180x (2002).
52 陳家浩. 從光電效應到光電子顯微術. 物理雙月刊 廿七卷五期 (2005).
53 Attwood, D. Soft x-rays and extreme ultraviolet radiation: principles and applications. (Cambridge university press, 2000).