簡易檢索 / 詳目顯示

研究生: 陳俊亨
Chen, Chu-heng
論文名稱: 融入電腦模擬對七年級學生在遺傳單元之認知成就、學習動機與心流經驗的影響
Impacts of Integrating Computer Simulation into Genetics on Seventh Graders’ Cognitive Achievement, Learning Motivation, and Flow Experience
指導教授: 張文華
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 97
中文關鍵詞: 心流經驗國中七年級電腦模擬認知成就遺傳單元學習動機
英文關鍵詞: flow experience, 7th graders, computer simulation software, cognitive achievement, genetics, learning motivation
論文種類: 學術論文
相關次數: 點閱:305下載:35
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 遺傳學是國中七年級學生感到艱深困難的生物單元之一。遺傳概念既微觀且抽象,教師的教學甚至可能導致學生形成另有概念。本研究使用Pedagogica軟體融入遺傳單元,探討實際操作模擬軟體對不同認知成就學生之認知成就、學習動機與心流經驗的影響。本研究方法採用單一組前後測實驗設計,研究對象為桃園縣某國中七年級學生合計81人,以兩人一組操控一台電腦的方式進行課程活動,教師使用Pedagogica軟體介紹遺傳單元的相關概念,學生需操作模擬軟體來完成學習單。本研究使用的工具包括:遺傳學成就測驗、學生科學學習動機量表、心流經歷量表、心流面向量表。研究結果顯示:
    一、不同成就組經過電腦模擬教學活動後高成就組遺傳認知成就顯著高於中、低成就組(p<.05),中成就組顯著高於低成就組(p<.05)。
    二、經過電腦模擬教學活動後,高成就組「自我效能」顯著高於中成就組(p<.05);高成就組「主動學習策略」顯著高於低成就組(p<.05)。
    三、全體學生遺傳認知成就對心流經驗部分向度呈現顯著正相關。
    四、多元線性回歸分析呈現心流經驗可以預測不同成就組學習動機表現。

    To the 7th graders, the most difficult in Life and Technology Learning Area are the units related to genetics. Since genetics is microscopic and abstract, students are very likely to form alternative conceptions of it if the units are taught with inappropriate methods. By integrating the software Pedagogica into learning genetics, the purpose of this research was to find out the influences of the practices of simulation software on the learning motivation and flow experience of students with different levels of achievements. This research was practiced by contrasting the pre-test and post-test scores of a group. The subjects consist of eighty-one students in three different classes. The process was completed with two students operating one computer. During the process, the teacher used the simulation software to introduce concepts related to genetics, while the students completed the questions in the handouts by practicing the software. The tools utilized in this research included tests of achievement in genetics, SMTSL, flow experience scale, and instruments of flow dimensions. The results of this research are as follows.
    1.High-achieving groups scored higher in tests of achievement in genetics than middle-achieving and low-achieving ones (p<.05). Middle-achieving groups scored higher in tests of achievement in genetics than low-achieving ones (p<.05).
    2.High-achieving groups scored higher in SE than middle-achieving ones(p<.05); in ALS , high-achieving groups scored higher than low-achieving ones(p<.05).
    3.As a whole, the post-test score and the progress between the pre-test and post-test scores in tests of achievement in genetics had significantly a positive correlation with their flow experience.
    4.Multiple regression analysis indicated that scores in flow experience can predict the learning motivation of students with different levels of achievements.

    目錄 第一章 緒論..............................................1 第一節 研究動機........................................1 第二節 研究目的與研究問題................................4 第三節 名詞解釋........................................5 第四節 研究範圍與限制...................................7 第二章 文獻探討...........................................8 第一節 遺傳單元的教學...................................8 第二節 電腦模擬教學與相關研究............................17 第三節 學習動機理論與相關研究............................21 第四節 心流經驗理論與相關研究............................28 第三章 研究方法...........................................34 第一節 研究設計........................................34 第二節 研究對象........................................37 第三節 教學活動設計.....................................38 第四節 研究工具........................................44 第五節 資料分析........................................49 第四章 研究結果與討論......................................50 第一節 認知成就表現.....................................50 第二節 學生科學動機表現..................................54 第三節 心流經驗表現.....................................59 第五章 結論與建議..........................................68 第一節 結論............................................68 第二節 建議............................................70 參考文獻..................................................73 一、中文部分............................................73 二、西文部分............................................78 附錄1 Pedagogica 軟體融入教學教案..........................86 附錄2 課堂活動學習單........................................90 附錄3 遺傳成就測驗.........................................92 附錄4 學生科學學習動機量表(SMTSL)............................95 附錄5心流經驗檢測量表.......................................97

    一、中文部分
    王士文 (2008)。探究不同電腦模擬使用情境對概念學習的影響:以七年級遺傳單元為例。未出版碩士論文,國立台灣師範大學,台北市。
    王月秋 (2003)。網頁輔助教學對國二學生在"光的折射"課程認知成就之研究。未出版碩士論文,國立高雄師範大學,高雄市。
    王邦權 (2007)。資訊科技融入教學影響國中學生認知成就之研究。未出版碩士論文,國立台灣師範大學,台北市。
    王貞惠 (2001)。改善學生遺傳概念學習之研究─ 應用 [巨觀]-[微觀]-[符號表徵] 導向之概念改變教學模式。未出版碩士論文,國立高雄師範大學,高雄市。
    王淑卿 (2004)。在不同課室環境中實施資訊融入自然領域教學之認知成就探討。未出版碩士論文,國立彰化師範大學,彰化市。
    朱幼倩 (2009)。國中生學習遺傳學困難的探究。中華民國第25 屆科學教育學術研討會手冊,433-439頁。
    宋秀珠 (2008)。探討電腦多媒體融入教學對學生生物認知成就的影響。未出版碩士論文,國立台灣師範大學,台北市。
    李哲明 (2008)。學習風格與神馳經驗對國小學童數位認知成就之影響。未出版碩士論文,國立高雄師範大學,高雄市。
    李賜玲 (2011)。團隊遊戲學習與心流經驗對認知成就之探討-以國中數學為例。未出版碩士論文,國立交通大學,新竹市。
    何秋萱 (2004)。Flash 融入五階段概念改變教學策略對國中生遺傳概念改變的影響。未出版碩士論文,國立彰化師範大學,彰化市。
    林月芳 (2005)。資訊融入教學以提昇國小學童天文學習效能之研究—以「月亮」單元為例。未出版碩士論文,國立屏東教育大學,屏東市。
    林合彥 (2004)。具有教學支援的網路化模擬學習環境。未出版碩士論文,國立台灣師範大學,台北市。
    林秀美 (1996)。電腦模擬:一個具有潛力的學習環境。視聽教育雙月刊,38(3),16-25。
    林秀美 (1998)。電腦模擬在科技教育上之應用。教學科技與媒體,42,23-31。
    林洨岑 (2011)。數位學習教材設計與心流經驗關係之研究。未出版碩士論文,淡江大學,新北市。
    林傳傑 (2004)。資訊融入教學與評量─以「地球運動」為例。未出版碩士論文,國立屏東師教育大學,屏東市。
    林瓊瑤 (2003)。英語科學習動機調整訓練團體對高中生自我效能、學習動機及課業成就之影響。未出版碩士論文,國立彰化師範大學,彰化市。
    周怡君 (2014)。不同學習風格學生在專題導向學習中的心流經驗與學習動機之研究。未出版碩士論文,淡江大學,新北市。
    苗桂蓉 (2009)。國小舞蹈班學生即興創作心流經驗之研究。未出版碩士論文,台北巿立體育學院,台北市。
    洪秀惠 (2006)。資訊融入教學對國中學生自然科學習動機及認知成就影響之探討--以消化系統、恆定性單元為例。未出版碩士論文,國立彰化師範大學,彰化市。
    洪家祐 (2008)。遊戲情境中之自我效能與自我調節對心流經驗的影響。未出版碩士論文,國立交通大學,新竹市。
    侯雅齡 (2008)。幼兒在動手作科學活動中心流經驗成長類型及相關因素之研究。幼兒教保研究,2,1-17。
    凌蘋 (2013)。科學遊戲融入引導式探究教學對國中低成就學生自然科認知成就影響之研究。未出版碩士論文,國立彰化師範大學,彰化市。
    張桇羿 (2012)。網路教學平台使用效能對學生的心流經驗與學習經驗之影響。未出版碩士論文,淡江大學,新北市。
    張春興 (1994)。現代心理學。台北:東華。
    張春興 (2004)。教育心理學—三化取向的理論與實踐。台北:東華。
    莊啟宗 (2006)。引導式資訊融入教學模式認知成就之研究。未出版碩士論文,靜宜大學,台中市。
    陳宗永 (2003)。電腦輔助教具對於國小四年級學童在「時間概念」認知成就與學習態度之影響。未出版碩士論文,國立台中教育大學,台中市。
    陳怡仁 (2007)。應用數位化雙重情境學習課程探討多媒體呈現形式對國中生遺傳概念建構之影響。未出版碩士論文,國立交通大學,新竹市。
    陳科全 (2013)。PowerPoint多滑鼠系統融入數學領域對國中學生認知成就與動機之探討-以臺中市某中學為例。未出版碩士論文,中華大學,新竹市。
    陳郁雯 (2004)。電腦模擬對學生學習成效影響之後設分析。未出版碩士論文,國立新竹教育大學,新竹市。
    陳曉華 (2013)。運用數位學習系統配合數學寫作對七年級學生數學認知成就之影響-以最大公因數與最小公倍數為例。未出版碩士論文,國立交通大學,新竹市。
    單文經 (1997)。教學媒體的選擇。台灣教育,560,8-11。
    彭成偉 (2013)。資訊融入數學領域教學對學生學習動機與成效影響之研究-以數列與等差級數單元為例。未出版碩士論文,大葉大學,彰化縣。
    葉玉珠 (1999)。電腦模擬應用於師資培訓之價值探討。國立中山大學共同科學報創刊號,167-179。
    葉炳煙 (2013)。學習動機定義與相關理論之研究。屏東教大體育,16,285-293。
    黃心瑩 (2008)。不同資訊融入教學法對學生認知成就之影響之研究-以台北縣國民中學數學科為例。未出版碩士論文,國立台灣師範大學,台北市。
    黃台珠 (1990)。中學生遺傳相關錯誤類型的探討。科學教育月刊,133,34–53。
    黃台珠 (1993)。中學生遺傳學習的現況與問題。高師大學報,4,269–300。
    黃美娟 (2004)。國一生透過實地種植與利用電腦模擬實驗對學習遺傳學之效益研究。未出版碩士論文,國立台灣師範大學,台北市。
    黃淑貞 (2009)。應用不同媒體融入教學對國中生認知成就之影響:以生物科技為例。未出版碩士論文,國立台灣師範大學,台北市。
    黃福坤 (2003)。簡易動畫模擬設計製作環境:互動式的科學教學/學習工具。發表於第十一屆國際電腦輔助教學研討會。台北:國立台灣師範大學。
    黃福坤(2006)。透過物理模擬動畫進行物理教學與學習。物理雙月刊,28(3),536-544。
    黃健泉 (2012)。資訊科技融入教學對國中學生自然科學習動機與認知成就的影響 -以磁場與電流磁效應單元為例。未出版碩士論文,國立彰化師範大學,彰化市。
    楊美雪(1992)。電腦輔助學習之內涵與應用。教師天地,60,90-95。
    楊坤原、張賴妙理 (2004)。遺傳學迷思概念之文獻探討及其在教學上的啓示。科學教育學刊,12(3),365-398。
    楊玫樺 (2009)。資訊融入教學模式對中部七年級學生自然科學習動機與認知成就之影響。未出版碩士論文,國立彰化師範大學,彰化市。
    楊偲敏 (2005)。學習風格與神馳經驗對數位認知成就的影響。未出版碩士論文,國立高雄師範大學,高雄市。
    蔡執仲、段曉林 (2005)。探究式實驗教學對國二學生理化學習動機之影響。科學教育學刊,13(3),289-315
    蔡執仲、段曉林、靳知勤 (2007)。巢狀探究教學模式對國二學生理化學習動機影響之探討。科學教育學刊,15(2),119-144。
    蔡菽娟 (2007)。不同電腦教學策略對南部國一學生學習動機、認知成就影響之研究。未出版碩士論文,國立彰化師範大學,彰化市。
    賴正山 (1992)。電腦多媒體對國小學生學習自然科之成效研究。未出版碩士論文,國立彰化師範大學,彰化市。
    賴怡婷 (2013)。學習動機、學習態度、學習滿意度與認知成就關係之研究-以某技術學院美容系學生為例。未出版碩士論文,南華大學,嘉義縣。
    賴彥錚 (2013)。資訊科技融入教學對國中生英文閱讀之成效。未出版碩士論文,國立台灣科技大學,台北市。
    蕭錫錡、梁麗珍 (2001)。如何提升自我導向學習能力。人文及社會學科教學通訊,12(2),53-165。
    魏金財 (1992)。電腦模擬實驗在中、小學遺傳概念學習上的運用。國際視聽教育學術研討會論文集,6,13-19。
    鐘孟玉 (2006)。面對面合作學習與線上合作學習之探討。未出版碩士論文,靜宜大學,台中市。


    二、西文部分
    Alessi, S. M., & Trollip, S. R. (2001). Multimedia for learning: Methods and Development. Needham Heights, MA: Allyn & Bacon.
    Atkinson, J. W. (1964). An introduction to motivation. Princeton: Van Nostrand.
    Bahar, M. (1996). A diagnostic study of concept difficulties in secondary school biology courses, M. Sc. Thesis, University of Glasgow.
    Bahar, M., Johnstone, A., & Hansell, M. (1999). Revisiting learning difficulties in biology. Journal of Biological Education, 33(2), 84-86.
    Bahar, M., Johnstone, A. H., & Sutcliffe, R. G. (1999). Investigation of students' cognitivestructure in elementary genetics through word association tests. Journal of Biological Education, 33(3), 134-141.
    Bandura, A. (1977). Self-efficacy mechanism in human agency. American Psychologist, 37(2), 122-147.
    Banet, E., & Nunez, F. (1997). Teaching and learning about human nutrition: A constructivist approach. International Journal of Science Education, 19(10), 1169-1194.
    Barak, M., Ashkar, T., & Dori, Y. J. (2011). Learning science via animated movies: Its effect on students’ thinking and motivation. Computers & Education, 56(3), 839-846.
    Barlia, L. (1999).High school student's motivation to engage in conceptual change-learning in science, Doctoral dissertation, The Ohio State University.
    Broussard, S. C., & Garrison, M. E. B. (2004). The relationship between classroom motivation and academic achievement in elementary school-aged children. Family and Consumer Sciences Research Journal, 33(2), 106–120.
    Brown, C. R. (1990). Some misconceptions in meiosis shown by students responding to an advanced level practical examination question in biology. Journal of Biology Education, 24(3), 182-186.
    Browning, M. E., & Lehman, J. D. (1988). Identification of student misconceptions in genetic problem solving via computer program. Journal of Research in Science Teaching, 25, 747-761.
    Cassels, J. R. T., & Johnstone, A. H. (1978). What's in a word. New Scientist, 78, 432.
    Chan, T. S., & Ahern, T. C. (1999). Targeting motivation—Adapting flow theory to instructional design. Journal of Educational Computing Research, 21(2), 151–163.
    Chen, H. (2006a). Flow on the net-detecting web users’ positive affects and their flow state. Computers in Human Behavior, 22(2), 222-233.
    Chen, H., Wigand, T. R., & Nilan, S. M. (1999). Optimal experience of web activities.Computers in Human Behavior, 15, 585-608.
    Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Examples from learning and discovery in science. Cognitive Models of Science Minnesota Studies in the Philosophy of Science, 15, 129-186.
    Chi, M. T. H., & Slotta, J. D. (1993). The ontological coherence of intuitive physics. Cognition and Instruction, 10(2 & 3), 249-260.
    Chi, M. T. H., Slotta, J. D., & De Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and instruction, 4(1), 27-43.
    Chu, Y. C. (2008). Learning difficulties in genetics and the development of related attitudes in Taiwanese junior high schools , Unpublished doctoral dissertation, University of Glasgow.
    Collins, A., & Stewart, J. H. (1989) The knowledge structure of Mendelian genetics. The American Biology Teacher, 51, 143-149.
    Csikszentmihalyi, M. (1975). Beyond boredom and anxiety. San Francisco: Jossey-Bass.
    Csikszentmihalyi, M. (1996). Creativity: flow and the psychology of discovery and invention. New York: HarperCollinsPublishers.
    Csikszentmihalyi, M. (l997). The flow experience and its significance for human psychology. In M. Csikszentmihalyi & I. S. Csikszentmihalyi (Eds.), Optimal experience: psychological studies of flow in consciousness .(pp. 29-35). New York: Cambridge University Press.
    Csikszentmihalyi, M., Larson, R., & Prescott, S. (1977). The ecology of adolescent experience. Journal of Youth and Adolescence, 6, 281-294.
    Deci, E. L., Koestner, R., & Ryan, R. M. (1999). A meta-analytic review of experiments examining the effects of extrinsic rewards on intrinsic motivation. Psychological Bulletin, 125(6), 627–668
    Driver, R., & Oldham, V. (1986). A constructivist approach to curriculum development in science. Studies in Science Education, 13, 105-122.
    Finely, F., Steward, L., & Yaroch, L. (1982). Teachers’ perception of important and difficult science content. Science Education, 66(4), 531-538.
    Frase, L. E. (1998, April). An examination of teachers’ flow experience, efficacy, and instruction & leadership in large inner-city and urban school districts. Paper Presented at The Annual Meeting of the American Educational Research Association, San Diego, CA.
    Garcia, T. (1995). The role of motivational strategies in self-regulated learning. New Directions for Teaching and Learning, 63, 29–42.
    Gottfried, A. E. (1990). Academic intrinsic motivation in young elementary school children. Journal of Educational Psychology, 82(3), 525–538.
    Hameed, H., Hackling, M. W., & Garnett, P. J. (1993). Facilitating conceptual change in chemical equilibrium using a CAI strategy. International Journal of Science Education, 15(2), 221-230.
    Heider, F. (1944). Social perception and phenomenal causality. Psychological review, 51(6), 358.
    Hektner, J. M., & Csikszentmihalyi M. (1996). A longitudinal exploration of flow and intrinsic motivation in adolescent. Paper Presented at The Annual Meeting of the American Educational Research Association, New York.
    Hoffman, L. D., & Novak, P. T. (1996). Marketing in hypermedia computer- mediated environments conceptual foundations. Journal of Marketing, 60(3), 50-68.
    Hoffman, L. D., Novak, P. T., & Yung, Y. F. (1998). Modeling the structure of the flow experience among web users, INFORMS Marketing Science and the Internet Mini-Conference, MIT
    Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what theyseem. Journal of Computer Assisted Learning, 7, 75-83.
    Johnstone, A. H., & Selepeng, D. (2001) A language problem revisited. CERAPIE, 2(1), 19-29.
    Jonassen, D. H. (2000).Computers as mind tools for schools: Engaging critical thinking. Columbus, OH: Prentice-Hall.
    Kindfield, A. C. H. (1994) Understanding a basic biological process: Expert and novice models of meiosis. Science Education, 78, 255-283.
    Kinnear, J. (1983) Identification of misconceptions in genetics and the use of computer simulations in their correction. In H. Helm and J. D. Novak (Eds.), Proceedings of the International Seminar on Misconceptions in Science and Mathematics(pp. 101-110). Ithaca, NY: Cornell University.
    Kleinginna, P. R., & Kleinginna, A. M. (1981). A categorized list of emotion definitions, with suggestions for a consensual definition. Motivation and emotion, 5(4), 345-379.
    Lee, O. (1989). Motivation to learning science in middle school classrooms. University Microfilms International. Unpublished doctoral dissertation, Michigan State University, East Lansing.
    Lee, O., & Brophy, J. (1996). Motivational patterns observed in sixth‐grade science classrooms. Journal of Research in Science Teaching, 33(3), 303-318.
    Lee, J. (1999). Effectiveness of Computer-based instruction simulation: A meta-analysis. International Journal of Instructional Media, 26(1), 71-85.
    Liao, L. F. (2006). A flow theory perspective on learner motivation and behavior in distance education. Distance Education, 27(1), 45-62.
    Massimini, F., & Carli, M. (1988). The systematic assessment of flow in daily experience. Optimal experience: psychological studies of flow in consciousness. New York : Cambridge University Press
    Massimini, F., Csikszentmihalyi, M., & Carli, M. (1987). The Monitoring of Optimal Experience A Tool for Psychiatric Rehabilitation. The Journal of Nervous and Mental Disease, 175(9), 545-549.
    McCown, R., Driscoll, M., & Roop, P. G. (1996). Educational psychology:A learning-centered approach to classroom practice (2nd ed.). Needham Heights, MA:Allyn & Bacon.
    Maslow, A. H. (1943). A theory of human motivation. Psychological review, 50(4), 370.
    Merrill, M. D., Tennyson, R. D., & Posey, L. O.(1992). Teaching concepts: An instructional design guide (2nd ed.). Englewood Cliffs, NJ: Educational Technology Publications.
    McClelland, D. C., & Pilon, D.(1965). Toward a theory motive acquisition. American Psychologist, 20, 321-333.
    McCown, R. R., Driscoll, M., & Roop, P. (1996). Facilitating student motivation. Educational psychology, 278-309.
    Najjar, L. J. (1998). Principles of educational multimedia user interface design. Human Factors: The Journal of the Human Factors and Ergonomics Society, 40(2), 311-323.
    Napier, J. D., & Riley, J. P. (1985). Relationship between affective determinants and achievement in science for seventeen‐year‐olds. Journal of Research in Science Teaching, 22(4), 365-383.
    Nolen, S. B., & Haladyna, T. M. (1989). Psyching out the science teacher: Students’ motivation, perceived teacher goals and study strategies. Paper presented at the annual meeting of the American Educational Research Association, San Francisco, CA, March.
    Pintrich, P. R., & Blumenfeld, P. C. (1985). Classroom experience and children’s self-perceptions of ability, effort, and conduct. Journal of Educational Psychology, 77(6), 646–657.
    Pintrich, P. R. (1999). Motivational beliefs as resources for and constraints on conceptual change. New perspectives on conceptual change, 33-50.
    Pintrich, P. R., & Schunk, D. H. (2002). Motivation in education: Theory, research, and applications: Merrill Columbus, OH.
    Pintrich, P. R., Marx, R. W., & Boyle, R. A. (1993). Beyond cold conceptual change: The role of motivational beliefs and classroom contextual factors in the process of conceptual change. Review of Educational Research, 63, 167-199.
    Pritchard, A. J. (1990) Biology education and particulate theory: Too much chemicals! In Lijnse, P. L., Licht, P., Vos, W. and Vaarlo, A. J. (Ed) Relating macroscopic phenomena to microscopic particles. Utrecht, Netherlands: CD-Press, 131-138
    Rotter, J. B. (1966). Generalized expectancies for internal versus external control of reinforcement. Psychological monographs: General and applied, 80(1), 1-28.
    Stipek, D. J. (1996). Motivation and instruction. In D. C. Berliner & R. C. Calfee (Eds.), Handbook of educational psychology (pp. 85–113). New York: Macmillan.
    Tuan , H. L., Chin, C. C., & Shieh, S. H. (2005). The development of a questionnaire to measure students' motivation towards science learning. International Journal of Science Education, 27(6), 639-654.
    Turner, J. C. (1995). The influence of classroom contexts on young children’s motivation for literacy. Reading Research Quarterly, 30(3), 410–441.
    Uguroglu, M. E., Schiller, D. P., & Walberg, H. J. (1981). A multidimensional motivational instrument. Psychology in the Schools, 18, 279–285.
    Vygotsky, L. S. (1962) Thought and Language, New York: Wiley.
    Weiner, B. (1985). An attribution theory of achievement motivation and emotion. Psychological Review, 92, 548-573.
    Weiner, B. (1992). Human motivation: Metaphor, theories, and research. Newbury Park, CA: Sage Publications.
    Wichmann, A., Gottdenker, J., Jonassen, D., & Milrad, M. (2007). Scientific inquiry learning using computer supported experimentation. Retrieved January, 20, 2007. from http://spaceplanting.coe.missouri.edu/doc/docs/ ICCE_predictioncycle.pdf.
    Williamson, V. M., & Abraham, M. R. (1995). The effects of computer animation on the particulate mental models of college chemistry students. Journal of Research in Science Teaching, 32(5), 521-534.
    Willington, J. (1983) A taxonomy of scientific words. School Science Review, 64(229), 767-773.
    Yen, H. C., Tuan, H.-L., & Liao, C.-H. (2010). Investigating the influence of motivation on students’ conceptual learning outcomes in web-based vs. classroom-based science teaching contexts. Research in Science Education, 41(2), 211-224.
    Zhang, B., Krajcik, J., & Liu, X. (2006). Expert models and modeling processes associated with a computer modeling tool. Science Education, 90(4), 579-604.

    QR CODE