研究生: |
葉宇恆 Yeh, Yu-Heng |
---|---|
論文名稱: |
兩人對向間隙穿越的行動因應 The action adaption in two walkers face-to-face navigating through apertures |
指導教授: |
楊梓楣
Yang, Chih-Mei |
學位類別: |
碩士 Master |
系所名稱: |
體育學系 Department of Physical Education |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 53 |
中文關鍵詞: | 環境賦使 、行走步態調整 、個人空間 、肩膀旋轉 |
英文關鍵詞: | affordances, gait adaption, personal space, shoulder rotation |
論文種類: | 學術論文 |
相關次數: | 點閱:164 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
個體朝向目的地的移動過程,持續地覺察可能產生碰撞之障礙物,並維持行動時的安全範圍,其可使個體從容地調整步態或肢段位置,以因應阻礙行走的物體或他人,此為個人空間的概念。本研究結合生態取向與個人空間的觀點,欲瞭解受視覺訊息調控的移動行為,與社會環境賦使知覺的交互作用,進一步探究環境對於因應行為的影響,同時檢證個人空間調控移動行為之議題。本研究共招募24名健康男性為實驗參與者,兩兩分派為一組,實驗中要求兩名參與者,同時跟隨聲響節拍且對向步行穿越間隙,過程中避免碰撞他人或物體。本實驗的自變項有:(一) 移動速度:參與者跟隨不同速率之聲響節奏方式,表現出較快及較慢的步頻 (100與130 步/分鐘) 及不同步行速度;(二) 空間限制程度:分別為參與者們肩寬總合的0.9、1.1、1.3、及1.5倍寬度進行間隙寬度的操弄。本研究使用三維動作捕捉系統擷取動作資料,計算個人空間範圍以及肩膀旋轉角度,進而探討兩人對向穿越間隙的因應行為,將實驗所得資料進行相依樣本二因子變異數分析。研究結果顯示個體以不同速度步行穿越四種寬度的間隙,偏好維持固定的個人空間,其縱向距離不受到速度快慢及間隙寬窄的影響,但橫向安全界線則受到空間限制的影響而改變;當二人同時穿越間隙時,彼此的肩膀旋轉角度會因為對方與門板的空間變窄,而增加通過時肩膀旋轉的幅度。本研究歸結上述發現,社會環境賦使與個人空間對於穿越間隙的移動行為具有調節的功能。
Moving to the destination, human must perceive potential collision continually, and maintains personal space (PS) to modulate segmental displacement or gait-pattern. PS is a flexible safe zone around oneself and leads walker adapt obstacles or other pedestrian. Ecological approach and concept of PS were used to investigate how the environment affect adaptive behavior and to know social affordance perception in human locomotor behavior. Twelve pairs of participants were recruited. They were demanded to walk through apertures face-to-face based on setting rhythm and avoid collision with door plank and the other participant. Experimental manipulation included stride frequency (100 and 130 steps/min) and aperture width (0.9, 1.1, 1.3, and 1.5 times of pairs shoulder width amount). Trunk and feet movement data were recorded by motion capture system. Shoulder rotation angle, antero-posterior axis distance, and lateral axis distance were calculated to define adaptive behavior and PS while two walkers pass through apertures simultaneously. It was found that participants prefer to keep a safety personal distance. Antero-posterior axis radii were not affected by the walking speed and aperture width, but the safety distance in lateral axis would vary with aperture widths. When a pair of walkers passed through the door aperture at the same time, they performed lager shoulder rotation magnitude in wider door aperture. Shoulder rotation magnitude was regulated by the width of aperture.
張智惠(2011)。肩寛對環境-人-人系統穿越間隙動作的影響,大專體育學刊,
13,149-157頁。
Basili, P., Sağlam, M., Kruse, T., Huber, M., Kirsch, A., & Glasauer, S. (2013).
Strategies of locomotor collision avoidance. Gait & Posture, 37, 385-390.
Beek, P. J., Peper, C. E., & Stegeman, D. F. (1995). Dynamical models of movement
coordination. Human Movement Science, 14, 573-608.
Bernstein, N. (1967). The coordination and regulation of movements. London:
Pergamon.
Cesari, P., & Newell, K. M. (2000). Body scaling of grip configurations in children
aged 6–12 years. Developmental Psychobiology, 36, 301-310.
Cinelli, M. E., & Patla, A. E. (2007). Travel path conditions dictate the manner in
which individuals avoid collisions. Gait & Posture, 26, 186-193.
Cinelli, M. E., & Patla, A. E. (2008). Locomotor avoidance behaviors during a
visually guided task involving an approaching object. Gait & Posture, 28, 596-601.
Fajen, B. R., & Warren, W. H. (2003). Behavioral dynamics of steering, obstacle
avoidance, and route selection. Journal of Experimental Psychology: Human Perception and Performance, 29, 343–362.
Fath, A. J., & Fajen, B. R. (2011). Static and dynamic visual information about the
size and passability of an aperture. Perception, 40, 887-904.
Gerin-Lajoie, M., Richards, C. L., & McFadyen, B. J. (2005). The negotiation of
stationary and moving obstructions during walking: anticipatory locomotor adaptations and preservation of personal space. Motor Control, 9, 242-269.
Gerin-Lajoie, M., Richards, C. L., & McFadyen, B. J. (2006). The circumvention of
obstacles during walking in different environmental context: a comparison between older and younger adults. Gait & Posture, 24, 346-369.
Gerin-Lajoie, M., Ronsky, J. L., Loitz-Ramage, B., Robu, I., Richards, C. L., &
McFadyen, B. J. (2006). Navigational strategies during fast walking: A comparison between trained athletes and non-athletes. Gait & Posture, 26, 539-545.
Gerin-Lajoie, M., Richards, C. L., Fung, J., & McFadyen, B. J. (2008). Characteristics
of personal space during obstacle circumvention in physical and virtual environments. Gait & Posture, 27, 239-247.
Gibson, J. J. (1958). Visually controlled locomotion and visual orientation in animals
and man. British Journal of Psychology, 49, 182-194.
Gibson, J. J. (1966). The senses considered as perceptual systems. Boston: Houghton
Mifflin.
Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton
Mifflin.
Hall, E. T. (1959). The silent language. New York: Doubleday.
Hackney, A. L., & Cinelli, M. E. (2011). Action strategies of older adults walking through apertures. Gait & Posture, 33, 733-736.
Helbing, D., & Molnar, P. (1995). Social force model for pedestrian dynamics. Physical Review E, 51, 4282-4286.
Helbing, D., Farkas, I., & Vicsek, T. (2000). Simulating dynamical features of escape panic. Nature, 407, 487-490.
Higuchi, T., Cinelli, M. E., Greig, M. A., & Patla, A. E. (2006). Locomotion through
apertures when wider space for locomotion is necessary: adaptation to artificially altered bodily states. Experimental Brain Research, 175, 50-59.
Higuchi, T., Murai, G., Kijima, A., Seya, Y., Wagman, J. B., & Imanaka, K. (2011).
Athletic experience influence shoulder rotations when running through apertures. Human Movement Science, 30, 534-549.
Higuchi, T., Seya, Y., & Imanaka, K. (2012). Rule for scaling shoulder rotation angles
while walking through apertures. Plos One, 7, 1-8.
Jiang, Y., & Mark, L. S. (1994). The effect of gap depth on the perception of whether a gap is crossable. Perception and Psychophysics, 56, 691–700.
Kitazawa, K., & Fujiyama, T. (2010). Pedestrian vision and collision avoidance behavior: Investigation of the information process space of pedestrians using an eye tracker. In Pedestrian and evacuation dynamics 2008 (pp. 95- 108). Berlin: Springer.
Koenderink, J. J. (1999). Brain scanning and the single mind. Perception, 28, 1181-
1184.
Kugler, P. N., & Turvey, M. T. (1987). Information, natural law, and the self-assembly
of rhythmic movement. Hillsdale, NJ: Lawrence Erlbaum Associates.
Lopresti-Goodman, S. M., Rivera, A., & Dressel, C. (2012). Practicing safe text: The impact of texting on walking behavior. Applied Cognitive Psychology, 26, 664-648.
Marsh, K. L., Richardson, M. J., Baron, R. M., & Schmidt, R. C. (2006). Contrasting
approaches to perceiving and acting with others. Ecological Psychology, 18, 1-38.
Mark, L. S., & Vogele, D. (1987). A biodynamic basis for perceived categories of action: A study of sitting and stair climbing. Journal of Motor Behavior, 19, 367–384.
Mark, L. S., Nemeth, K., Gardner, D., Dainoff, M. J., Paasche, J., Duffy, M., & Grandt, K. (1997). Postural dynamics and the preferred critical boundary for visually guided reaching. Journal of Experimental Psychology: Human Perception and Performance, 23, 1365-1379.
Mark, L. S. (2007). Perceiving the actions of other people. Ecological Psychology, 19,
107-136.
Michaels, C. F., & Carello, C. (1981). Direct perception. Englewood Cliffs, NJ:
Prentice-Hall.
Morgado, N., Muller, D., Gentaz, E., & Palluel-Germain, R. (2011). Close to me? The
influence of affective closeness on space perception. Perception, 40, 877-879.
Olivier, A. H., Ondřej, J., Pettré, J., Kulpa, R., & Cretual, A. (2010). Interaction
between real and virtual humans during walking: Perceptual evluation of a simple device. Proceedings of the 7th Symposium on Applied Perception in Graphics and Visualization, 117-124. doi:10.1145/1836248.1836271
Olivier, A. H., Marin, A., Crétual, A., & Pettré, J. (2012). Minimal predicted distance:
A common metric for collision avoidance during pairwise interactions between walkers. Gait & Posture, 36, 399-404.
Oudejans, R. R. D., Michaels, C. F., Bakker, F. C., & Dolné, M. A. (1996). The
relevance of action in perceiving affordances: Perception of catchableness of fly balls. Journal of Experimental Psychology: Human Perception and Performance, 22, 879-891.
Patla, A. E., Prentice, S., Robinson, C., & Neufeld, J. (1991). Visual control of locomotion: strategies for changing direction and for going over obstacles. Journal of Experimental Psychology: Human Perception and Performance, 17, 603–634.
Patla, A. E. (1997). Understanding the roles of vision in the control of human
locomotion. Gait & Posture, 5, 54-69.
Peper, L., Bootsma, R. J., Mestre, D. R., & Bakker, F. C. (1994). Catching ball: How to get the hand to right place at the right time. Journal of Experimental Psychology: Human Perception and Performance, 20, 591-612.
Pham, Q. C., Hicheur, H., Arechavaleta, G., Laumond, J. P., & Berthoz, A. (2007).
The formation of trajectories during goal‐oriented locomotion in humans. II. A maximum smoothness model. European Journal of Neuroscience, 26, 2391-2403.
Ramenzoni, V. C., Riley, M. A., Davis, T., & Snyder, J. (2005). Perceiving whether or
not another person can use a step to reach an object. In Marsh, K. L (Eds.), Studies in Perception and Action VIII (pp. 15-18). Monterey, CA: Psychology Press.
Ratsamee, P., Mae, Y., Ohara, K., Takubo, T., & Arai, T. (2012). Modified
social force model with face pose for human collision avoidance. Proceedings of Human-Robot Interaction, 215-216.
Runeson, S., & Frykholm, G. (1983). Kinematic specification of dynamics as an
informational basis for person-and-action perception: Expectation, gender recognition, and deceptive intention. Journal of Experimental Psychology: General, 112, 85-615.
Schadschneider, A. (2002). Traffic flow: A statistical physics point of view. Physica A:
Statistical Mechanics and its Applications, 313, 153-187.
Stefanucci, J. K., & Geuss, M. N. (2009). Big people, little world: The body influences sizeperction. Perception, 38, 1782-1795.
Stoffregen, T. A., Gorday, K. M., Sheng, Y.-Y., & Flynn, S. B. (1999). Perceiving
affordances for another person’s actions. Journal of Experimental Psychology: Human Perception and Performance, 25, 120–136.
Stoffregen, T. A. (2003). Affordances as properties of the animal-environment system.
Ecological Psychology, 15, 155-134.
Tucker, M., & Ellis, R. (1998). On the relations between seen objects and components
of potential actions. Journal of Experimental Psychology: Human Perception and Performance, 24, 830-846.
Vaills, L. A., &McFadyen, B. J. (2003). Locomotor adjustments for circumvention of
an obstacle in the travel path. Experimental Brain Research, 152,409-414.
Wagman, J. B., & Taylor, K. R. (2005). Perceiving affordances for aperture crossing for the person-plus-object system. Ecological Psychology, 17, 105-130.
Warren, W. H. (1984). Perceiving affordance: visual guidance of stair climbing.
Journal of Experimental Psychology: Human Perception and Performance, 10, 683-703.
Warren, W. H., & Whang, S. (1987). Visual guidance of walking through apertures:
Body-scaled information for affordances. Journal of Experimental Psychology: Human Perception and Performance, 13, 371-383.
Warren, W. H. (2006). The dynamics of perception and action. Psychological Review,
113, 358-389.
Warren, W. H., & Fajen, B. R. (2008). Behavioral dynamics of visually guided
locomotion. In A. Fuchs, & V. K. Jirsa (Eds.), Coordination: Neural, Behavioral and Social Dynamics (pp. 45-75). Heidelberg: Springer.
Warren, W. H. (1998). Visually controlled locomotion: 40 years later. Ecological
Psychology, 10, 177-219.
Wąs, J., Gudowski, B., & Matuszyk, P. J. (2006). Social distances model of pedestrian
dynamics. Cellular Automata, 4173, 492-501.
Watson, G., Brault, S., Kulpa, R., Bideau, B., Butterfield, J., & Craig, C. (2010).
Judging the ‘passability’ of dynamic gaps in a virtual rugby environment. Human Movement Science, 30, 942-956.
Witt, J. K. (2011). Action’s effect on perception. Current Directions in Psychological
Science, 20, 201-206.
Wilmut, K., & Barnett, A. L. (2010). Locomotor adjustments when navigating
through apertures. Haman Movement Science, 29, 289-298.
Wilmut, K., & Barnett, A. L. (2011). Locomotor behavior of children while
navigating through apertures. Experimental Brain Research, 210, 185-194.