研究生: |
王雨萌 Wang, Yu-Meng |
---|---|
論文名稱: |
利用金屬有機骨架進行分散式固相萃取搭配液相層析串聯式質譜技術分析單、雙及三磷酸腺苷化合物 Metal-organic framework-based dispersive solid-phase extraction coupled with UPLC-MS/MS for analysis of mono-, di-, and triphosphoadenosine compounds |
指導教授: |
陳頌方
Chen, Sung-Fang |
口試委員: |
陳頌方
Chen, Sung-Fang 林嘉和 Lin, Chia-Her 華國泰 Hua, Kuo-Tai 葉宛儒 Yeh, Wan-Ju 曾素香 Tseng, Su-Hsiang |
口試日期: | 2024/07/31 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 金屬有機骨架 、核苷酸化合物 、分散式固相萃取技術 、液相層析串聯質譜 |
英文關鍵詞: | MOF, Nucleotides, dSPE, UPLC-MS/MS |
DOI URL: | http://doi.org/10.6345/NTNU202401494 |
論文種類: | 學術論文 |
相關次數: | 點閱:97 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
核苷酸化合物是生物系統中作為能量來源的基本生物分子,由核糖、含氮鹼基及磷酸基團組成,存在於生物體如植物、動物、細菌當中。金屬有機骨架(MOFs)由於其高表面積和均勻的孔徑,在吸附領域當中有廣泛的應用。近年来的文獻顯示出MIL-101-NH2 (Al) 從水中去除磷酸鹽的顯著潛力,而腺苷核苷酸化合物結構上帶有磷酸基團。本研究中,合成MIL-101-NH2 (Al)及MIL-160 (Al)並對其進行表徵。同時選擇 MIL-101-NH2 (Al)作為分散式固相萃取(Dispersive Solid-Phase Extraction, dSPE)的吸附劑,以 MIL-160 (Al)作為對照。使用cyanopropyl(CN)管柱並搭配超高效液相層析串聯質譜(UPLC-MS/MS)系統分對AMP、ADP 和 ATP三個核苷酸化合物進行分析。MOF搭配分散式固相萃取法進行優化結果表明,結果顯示在酸性環境下AMP、ADP 和 ATP 能夠被成功脫附出來。同時層析上能在14分鐘內實現了良好的分離,並且具有良好的準確性(82-121%)及精密度(0.4%-14.3%),線性範圍為 1-1000 ng/mL,相關係數r > 0.995。偵測極限和定量極限分別為 0.5 ng/mL 和 1 ng/mL。本研究開發的基於 MOF 的 dSPE 搭配UPLC-MS/MS 方法在食品或生物樣品中具有巨大的應用潛力。
Nucleotides are essential biomolecules that serve as sources of energy in biological systems. Metal-organic frameworks (MOFs), have garnered significant attention due to their high surface area and uniform pore size. The MOFs is an ideal material for adsorp-tion applications, which have demonstrated significant potential of MIL-101-NH2 (Al) for phosphate removal from water. In this study, MIL-101-NH2 (Al) and MIL-160 (AI) were synthesized and characterized. MIL-101-NH2 (Al) selected as dispersive solid-phase extraction (dSPE) adsorbent, MIL-160 (AI) was used for comparison. The MOF-based dSPE method exhibited excellent efficiency in eluting nucleotides under acidic conditions. Ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) system was used for the determination of AMP, ADP and ATP. A good separation was achieved within 14 minutes, demonstrating high accuracy (82%-121%) and precision (0.4%-14.3%), with a linear range of 1-1000 ng/mL and correla-tion coefficients (r) > 0.995. The limit of detection (LOD) and limit of quantification (LOQ) were determined to be 0.5 ng/mL and 1 ng/mL, respectively. The MOF-based dSPE and UPLC-MS/MS method developed in this study holds immense potential for further applications in food or biological samples.
(1) Bonora, M.; Patergnani, S.; Rimessi, A.; De Marchi, E.; Suski, J. M.; Bononi, A.; Giorgi, C.; Marchi, S.; Missiroli, S.; Poletti, F.; Wieckowski, M. R.; Pinton, P. ATP Synthesis and Storage. Purinergic Signal. 2012, 8 (3), 343–357.
(2) Esmans, E. L.; Broes, D.; Hoes, I.; Lemière, F.; Vanhoutte, K. Liquid Chroma-tography–Mass Spectrometry in Nucleoside, Nucleotide and Modified Nucleotide Characterization. J. Chromatogr. A 1998, 794 (1), 109–127.
(3) Dwyer, K. M.; Kishore, B. K.; Robson, S. C. Conversion of Extracellular ATP into Adenosine: A Master Switch in Renal Health and Disease. Nat. Rev. Nephrol. 2020, 16 (9), 509–524.
(4) Nakano, M.; Imamura, H.; Sasaoka, N.; Yamamoto, M.; Uemura, N.; Shudo, T.; Fuchigami, T.; Takahashi, R.; Kakizuka, A. ATP Maintenance via Two Types of ATP Regulators Mitigates Pathological Phenotypes in Mouse Models of Parkinson’s Dis-ease. eBioMedicine 2017, 22, 225–241..
(5) Hess, J. R.; Greenberg, N. A. The Role of Nucleotides in the Immune and Gas-trointestinal Systems. Nutr. Clin. Pract. 2012, 27 (2), 281–294.
(6) Direct and simultaneous quantification of ATP, ADP and AMP by 1H and 31P Nuclear Magnetic Resonance spectroscopy. Talanta 2016, 150, 485–492.
(7) Hong, H.; Regenstein, J. M.; Luo, Y. The Importance of ATP-Related Com-pounds for the Freshness and Flavor of Post-Mortem Fish and Shellfish Muscle: A Review. Crit. Rev. Food Sci. Nutr. 2017, 57 (9), 1787–1798.
(8) Badawy, M. E. I.; El-Nouby, M. A. M.; Kimani, P. K.; Lim, L. W.; Rabea, E. I. A Review of the Modern Principles and Applications of Solid-Phase Extraction Tech-niques in Chromatographic Analysis. Anal. Sci. 2022, 38 (12), 1457–1487.
(9) Su, H.; Wang, Z.; Jia, Y.; Deng, L.; Chen, X.; Zhao, R.; Chan, T.-W. D. A Cad-mium(II)-Based Metal-Organic Framework Material for the Dispersive Solid-Phase Extraction of Polybrominated Diphenyl Ethers in Environmental Water Samples. J. Chromatogr. A 2015, 1422, 334–339.
(10) 臺灣質譜學會. 質譜分析技術原理與應用; 全華圖書: 新北市, 2015.
(11) Ścigalski, P.; Kosobucki, P. Recent Materials Developed for Dispersive Solid Phase Extraction. Molecules 2020, 25 (21), 4869.
(12) Lawal, A.; Wong, R. C. S.; Tan, G. H.; Abdulra’uf, L. B.; Alsharif, A. M. A. Re-cent Modifications and Validation of QuEChERS-dSPE Coupled to LC–MS and GC–MS Instruments for Determination of Pesticide/Agrochemical Residues in Fruits and Vegetables: Review. J. Chromatogr. Sci. 2018, 56 (7), 656–669..
(13) Cela-Pérez, M. C.; Barbosa-Pereira, L.; Vecino, X.; Pérez-Ameneiro, M.; Latorre, A. L.; López-Vilariño, J. M.; González Rodríguez, M. V.; Moldes, A. B.; Cruz, J. M. Selective Removal of ATP Degradation Products from Food Matrices II: Rapid Screening of Hypoxanthine and Inosine by Molecularly Imprinted Matrix Solid-Phase Dispersion for Evaluation of Fish Freshness. Talanta 2015, 135, 58–66.
(14) Kampouraki, Z.-C.; Giannakoudakis, D. A.; Nair, V.; Hosseini-Bandegharaei, A.; Colmenares, J. C.; Deliyanni, E. A. Metal Organic Frameworks as Desulfurization Ad-sorbents of DBT and 4,6-DMDBT from Fuels. Molecules 2019, 24 (24), 4525.
(15) Ding, M.; Cai, X.; Jiang, H.-L. Improving MOF Stability: Approaches and Ap-plications. Chem. Sci. 2019, 10 (44), 10209–10230. https://doi.org/10.1039/C9SC03916C.
(16) Shi, W.; Li, W.; Nguyen, W.; Chen, W.; Wang, J.; Chen, M. Advances of Metal Organic Frameworks in Analytical Applications. Mater. Today Adv. 2022, 15, 100273.
(17) Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science 2005, 309 (5743), 2040–2042.
(18) Serra-Crespo, P.; Ramos-Fernandez, E. V.; Gascon, J.; Kapteijn, F. Synthesis and Characterization of an Amino Functionalized MIL-101(Al): Separation and Catalytic Properties. Chem. Mater. 2011, 23 (10), 2565–2572.
(19) Cadiau, A.; Lee, J. S.; Damasceno Borges, D.; Fabry, P.; Devic, T.; Wharmby, M. T.; Martineau, C.; Foucher, D.; Taulelle, F.; Jun, C.-H.; Hwang, Y. K.; Stock, N.; De Lange, M. F.; Kapteijn, F.; Gascon, J.; Maurin, G.; Chang, J.-S.; Serre, C. Design of Hydrophilic Metal Organic Framework Water Adsorbents for Heat Reallocation. Adv. Mater. 2015, 27 (32), 4775–4780.
(20) Wahiduzzaman, M.; Lenzen, D.; Maurin, G.; Stock, N.; Wharmby, M. T. Rietveld Refinement of MIL-160 and Its Structural Flexibility Upon H2O and N2 Adsorption. Eur. J. Inorg. Chem. 2018, 2018 (32), 3626–3632.
(21) Gao, G.; Xing, Y.; Liu, T.; Wang, J.; Hou, X. UiO-66(Zr) as Sorbent for Porous Membrane Protected Micro-Solid-Phase Extraction Androgens and Progestogens in Environmental Water Samples Coupled with LC-MS/MS Analysis: The Application of Experimental and Molecular Simulation Method. Microchem. J. 2019, 146, 126–133.
(22) Chen, M.; Zhao, Y.; Yang, Y.; Yang, Y.; Wang, H.; Luo, D.; Xie, S.; Chen, D. Development of a Magnetic MOF-Based M-D-μSPE Methodology Combined with LC-MS/MS for the Determination of Fluorotelomer Alcohols and Its Metabolites in Animal Derived Foods. Food Chem. 2021, 363, 130205.
(23) Jung, W.-T.; Hsieh, Y.-H.; Kuo, Y.-J.; Yu, Y.-H.; Liu, Y.-H.; Lu, K.-L.; Lee, H.-L. Rapid Microwave Synthesis of MOF Microrods: Dispersive SPE Coupled with UHPLC–MS/MS to Determine Fluoroquinolones in Honey. Talanta 2023, 263, 124733.
(24) Wu, T.; Prasetya, N.; Li, K. Recent Advances in Aluminium-Based Metal-Organic Frameworks (MOF) and Its Membrane Applications. J. Membr. Sci. 2020, 615, 118493.
(25) Wang, M.; Wang, J.; Wang, K.; Zhang, L.; Cao, X.; Guo, C.; Wang, J.; Wu, B. Magnetic Mesoporous Material Derived from MIL-88B Modified by l-Alanine as Modified QuEChERS Adsorbent for the Determination of 6 Pesticide Residues in 4 Vegetables by UPLC-MS/MS. Food Chem. 2022, 384, 132325.
(26) Xie, Y.; Zhang, L.; Hou, W.; Cheng, Y.; Luo, F.; Liu, Z.; Zhang, Z. A Novel Method for Monitoring N-Nitrosamines Impurities Using NH2-MIL-101(Fe) Mediat-ed Dispersive Micro-Solid Phase Extraction Coupled with LC-MS/MS in Biopharma-ceuticals. J. Pharm. Sci. 2023, 112 (11), 2783–2789.
(27) Hage, D. S. 1 - Chromatography. In Principles and Applications of Clinical Mass Spectrometry; Rifai, N., Horvath, A. R., Wittwer, C. T., Eds.; Elsevier, 2018; pp 1–32.
(28) Hou, C.; Xiao, G.; Amakye, W. K.; Sun, J.; Xu, Z.; Ren, J. Guidelines for Purine Extraction and Determination in Foods. Food Front. 2021, 2 (4), 557–573.
(29) Liao, W.-R.; Huang, J.-P.; Chen, S.-F. Quantification of Adenosine Mono-, Di- and Triphosphate from Royal Jelly Using Liquid Chromatography - Tandem Mass Spectrometry. J. Food Drug Anal. 28 (3), 365–374.
(30) Czarnecka, J.; Cieślak, M.; Michał, K. Application of Solid Phase Extraction and High-Performance Liquid Chromatography to Qualitative and Quantitative Analysis of Nucleotides and Nucleosides in Human Cerebrospinal Fluid. J. Chromatogr. B 2005, 822 (1), 85–90.
(31) Law, A. S.; Hafen, P. S.; Brault, J. J. Liquid Chromatography Method for Simul-taneous Quantification of ATP and Its Degradation Products Compatible with Both UV-Vis and Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 2022, 1206, 123351.
(32) Wu, L.; Chen, L.; Selvaraj, J. N.; Wei, Y.; Wang, Y.; Li, Y.; Zhao, J.; Xue, X. Identification of the Distribution of Adenosine Phosphates, Nucleosides and Nucleo-bases in Royal Jelly. Food Chem. 2015, 173, 1111–1118.
(33) Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Elec-trospray Ionization for Mass Spectrometry of Large Biomolecules. Science 1989, 246 (4926), 64–71.
(34) Devic, T.; Serre, C. High Valence 3p and Transition Metal Based MOFs. Chem. Soc. Rev. 2014, 43 (16), 6097–6115.
(35) Huang, Z.; Lee, H. K. Micro-Solid-Phase Extraction of Organochlorine Pesti-cides Using Porous Metal-Organic Framework MIL-101 as Sorbent. J. Chromatogr. A 2015, 1401, 9–16.
(36) Solovyeva, M.; Krivosheeva, I.; Gordeeva, L.; Aristov, Y. MIL-160 as an Ad-sorbent for Atmospheric Water Harvesting. Energies 2021, 14 (12), 3586.
(37) Liu, R.; Chi, L.; Wang, X.; Wang, Y.; Sui, Y.; Xie, T.; Arandiyan, H. Effective and Selective Adsorption of Phosphate from Aqueous Solution via Trivalent-Metals-Based Amino-MIL-101 MOFs. Chem. Eng. J. 2019, 357, 159–168.
(38) Witters, E.; Roef, L.; Newton, R. P.; Van Dongen, W.; Esmans, E. L.; Van Onckelen, H. A. Quantitation of Cyclic Nucleotides in Biological Samples by Nega-tive Electrospray Tandem Mass Spectrometry Coupled to Ion Suppression Liquid Chromatography. Rapid Commun. Mass Spectrom. 1996, 10 (2), 225–231. -
(39) Chirita, R.-I.; West, C.; Finaru, A.-L.; Elfakir, C. Approach to Hydrophilic Inter-action Chromatography Column Selection: Application to Neurotransmitters Analysis. J. Chromatogr. A 2010, 1217 (18), 3091–3104.
(40) De Smet, M.; Massart, D. L. Retention Behaviour of Acidic, Neutral and Basic Drugs on a CN Column Using Phosphate Buffers in the Mobile Phase. J. Chromatogr. A 1987, 410, 77–94.
(41) A severe peak tailing of phosphate compounds caused by interaction with stain-less steel used for liquid chromatography and electrospray mass spectrometry - Waka-matsu - 2005 - Journal of Separation Science - Wiley Online Library.
(42) Neue, U. D. Theory of Peak Capacity in Gradient Elution. J. Chromatogr. A 2005, 1079 (1), 153–161.
(43) Qin, X.; Wang, X. Quantification of Nucleotides and Their Sugar Conjugates in Biological Samples: Purposes, Instruments and Applications. J. Pharm. Biomed. Anal. 2018, 158, 280–287.
(44) Xia, R.; Zhao, X.; Xin, G.; Sun, L.; Xu, H.; Hou, Z.; Li, Y.; Wang, Y. Energy Status Regulated Umami Compound Metabolism in Harvested Shiitake Mushrooms (Lentinus Edodes) with Spores Triggered to Release. Food Sci. Hum. Wellness 2023, 12 (1), 303–311.
(45) Zhou, R.; Yu, J.; Chi, R. Selective Removal of Phosphate from Aqueous Solution by MIL-101(Fe)/Bagasse Composite Prepared through Bagasse Size Control. Environ. Res. 2020, 188, 109817.
(46) Zhang, Y.; Kang, X.; Guo, P.; Tan, H.; Zhang, S.-H. Studies on the Removal of Phosphate in Water through Adsorption Using a Novel Zn-MOF and Its Derived Ma-terials. Arab. J. Chem. 2022, 15 (8), 103955.
(47) Liu, M.; Huang, Q.; Li, L.; Zhu, G.; Yang, X.; Wang, S. Cerium-Doped MIL-101-NH2(Fe) as Superior Adsorbent for Simultaneous Capture of Phosphate and As(V) from Yangzonghai Coastal Spring Water. J. Hazard. Mater. 2022, 423, 126981.
(48) Damasceno Borges, D.; Normand, P.; Permiakova, A.; Babarao, R.; Heymans, N.; Galvao, D. S.; Serre, C.; De Weireld, G.; Maurin, G. Gas Adsorption and Separation by the Al-Based Metal–Organic Framework MIL-160. J. Phys. Chem. C 2017, 121 (48), 26822–26832.
(49) Barjasteh, M.; Vossoughi, M.; Bagherzadeh, M.; Pooshang Bagheri, K. MIL-100(Fe) a Potent Adsorbent of Dacarbazine: Experimental and Molecular Docking Simulation. Chem. Eng. J. 2023, 452, 138987.
(50) Zhao, X.; Zheng, M.; Gao, X.; Gao, Z.; Huang, H. Construction of an Anionic Porous Framework via a Post-Synthesis Strategy to Regulate the Adsorption Behavior of Organic Pollutants. J. Mater. Sci. 2020, 55 (30), 14751–14760.