簡易檢索 / 詳目顯示

研究生: 高慈蓬
論文名稱: PPP2R2B 基因外遺傳研究及細胞模式研究
指導教授: 李桂楨
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 64
中文關鍵詞: 外遺傳甲基化阿茲海默氏症細胞模式氧化壓力
英文關鍵詞: PPP2R2B, epigenetic, DNA methylation, Alzheimer’s disease, oxidative stress
論文種類: 學術論文
相關次數: 點閱:253下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • PP2A為真核細胞內一種普遍的絲胺酸/酥胺酸去磷酸酶。PP2A全酶包含結構骨架A次單位、調節B次單位、催化C次單位。PPP2R2B (Bβ)為普遍表現在大腦組織中的調控次單位。PPP2R2B基因透過基因啟動子的差異使用及選擇性裁接,產生Bβ1和Bβ2兩種異構型蛋白。Bβ1啟動子上CAG三核苷酸重複擴增,可能因導致細胞質中Bβ1表現量的上升,而與第十二型脊髓小腦萎縮症相關。相反的,病例-對照組及啟動子的研究顯示,罕見短的CAG三核苷酸重複等位基因和低轉錄活性及阿茲海默氏症相關。為探討Bβ1在阿茲海默氏症上可能扮演的角色,本研究透過bisulfite處理及選殖定序,檢查5個阿茲海默氏症患者及年齡與性別配對的正常人,Bβ1啟動子1 kb片段的序列甲基化情形,結果發現患者的甲基化程度略高於正常人(雖然差異未達顯著性),顯示外遺傳改變可能影響阿茲海默氏症患者Bβ1的表現。此外,本研究並用穩定誘導表現Myc標籤的Bβ1及Bβ2細胞株,來探討Bβ調節的PP2A在神經退化中的角色。結果發現表現Bβ2的細胞活性氧自由基增加。氧化劑TBH及Aβ1-40的添加更顯著提昇Bβ2表現細胞的活性氧自由基。

    Protein phosphatase 2A (PP2A) is the predominant serine/threonine phosphatase in eukaryotic cells. The PP2A holoenzyme is composed of scaffolding/structural A, regulatory/targeting B and catalytic C subunits. Bβ, a regulatory subunit encoded by the PPP2R2B gene, is widely expressed in neurons throughout the brain. Two major isoforms, Bβ1 and Bβ2, are produced through differential promoter usage and alternative splicing of the PPP2R2B gene. Increased expression of Bβ1 isoform due to CAG repeat expansion at the 5' end of the gene causes autosomal dominant spinocerebellar ataxia type 12. Contrarily, the case-control study and reporter assay revealed that the rare short low transcriptional activity alleles are associated with Alzheimer’s disease (AD). To study the roles of Bβ1 in AD, bisulfite sequencing was performed to assess the CpG methylation using lymphocyte DNA from five AD patients and age- and gender-matched controls. The results of increased DNA methylation (although not significantly) in the 5' region of Bβ1 gene suggest that the epigenetic change may alter the Bβ1 expression in AD patients. In addition, Tet-on inducible cell lines expressing Myc-tagged Bβ1 and Bβ2 were used to study the role of Bβ-modulating PP2A in neuronal degeneration. The Bβ2-expressing cells are characterized by increase of reactive oxygen species (ROS). Addition of TBH (tert-butyl hydroperoxide) and Aβ1-40 also revealed increased ROS production in Bβ2-expressing cells.

    目錄 I 摘要 IV Abstract V 圖表目錄 VI 壹、緒論 1 一、脊髓小腦運動失調症(Spinocerebellar ataxia) 1 二、第十二型脊髓小腦運動失調症(SCA12) 2 三、阿茲海默氏症(Alzheimer’s Disease) 3 四、去磷酸酶PP2A與PPP2R2B基因 6 五、調控基因表現與阿茲海默氏症 9 貳、研究目的 12 參、研究材料與方法 13 一、PPP2R2B基因啟動子的外遺傳甲基化分析 13 (一)研究樣品 13 (二)基因組DNA (genomic DNA)的萃取 13 (三) CpG 島甲基化分析 13 1、搜尋PPP2R2B基因啟動子區域的CpG島 14 2、設計PCR引子 14 3、Sodium bisulfite處理 14 4、聚合酶連鎖反應(PCR) 15 5、DNA純化 15 6、轉型勝任細胞(Competent cells)製備 16 7、接合反應 17 8、細菌轉型作用(Transformation) 17 9、質體DNA小量製備與DNA定序 17 10、甲基化序列分析 18 二、誘導式Bβ細胞模式 19 (一)細胞來源及培養 19 (二) RNA分析 19 1、RNA萃取 19 2、反轉錄作用(Reverse transcription) 20 3、即時定量PCR (Real-time PCR) 20 (三)蛋白質分析 21 1、蛋白質萃取 21 2、西方轉漬法(Western blotting) 21 (三)存活率分析-trypan blue dye排除檢測 22 (四) ROS表現量分析 23 (五) Aβ1-40處理檢測細胞氧化壓力 23 1、聚集的Aβ1-40 23 2、DCF/Hoechst 33342螢光染色 24 肆、結果 25 一、阿茲海默氏症的外遺傳研究 25 (一) CpG島甲基化分析 25 (二) Bisulfite定序 25 二、誘導式Bβ細胞模式的氧化壓力研究 26 三、誘導式Bβ細胞的存活率以及氧化壓力 28 四、Aβ1-40處理檢測細胞氧化壓力 29 伍、討論 31 一、PPP2R2B基因5'區域的DNA甲基化分析 31 二、誘導式Bβ細胞的存活率以及氧化壓力 33 三、Aβ1-40處理的細胞氧化壓力 34 陸、參考文獻 36 柒、附錄圖表 48

    侯懿婷。退化性神經疾病:PPP2R2B基因族群遺傳分析及分生研究。國立台灣師範大學生命科學系九十三學年度碩士論文。2005。
    劉若芸。PPP2R2B基因遺傳檢測、啟動子記述與單一鹼基多型性分析。國立台灣師範大學生命科學系九十五學年度碩士論文。2007。
    李昇翰。PPP2R2B基因與臺灣失智症患者的遺傳及外遺傳研究。國立台灣師範大學生命科學系九十六學年度碩士論文。2008。
    林志信。PPP2R2B基因:啟動子記述及Bβ1/Bβ2 isoform在神經退化的角色。國立台灣師範大學生命科學系九十八學年度博士論文。2010。
    Anderson JP, Esch FS, Keim PS, Sambamurti K, Lieberburg I, Robakis NK. Exact cleavage site of Alzheimer amyloid precursor in neuronal PC-12 cells. Neurosci Lett 1991; 128: 126-128.
    Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16: 6-21.
    Bird TD. Genetic factors in Alzheimer’s disease. N Engl J Med 2005; 352: 862-864.
    Cacabelos R. Influence of pharmacogenetic factors on Alzheimer’s disease therapeutics. Neurodegener Dis 2008; 5: 176-178.
    Cedar H. DNA methylation and gene activity. Cell 1988; 53: 3-4.
    Chen CM, Hou YT, Liu JY, Wu YR, Lin CH, Fung HC, Hsu WC, Hsu Y, Lee SH, Hsieh-Li HM, Su MT, Chen ST, Lane HY, Lee-Chen GJ. PPP2R2B CAG repeat length in the Han Chinese in Taiwan: Association analyses in neurological and psychiatric disorders and potential functional implications. Am J Med Genet Part B 2009a; 150B: 124-129.
    Chen L, Liu L, Yin J, Luo Y, Huang S. Hydrogen peroxide-induced neuronal apoptosis is associated with inhibition of protein phosphatase 2A and 5, leading to activation of MAPK pathway. Int J Biochem Cell Biol 2009b; 41: 1284-1295.
    Cook RH, Schneck SA, Clark DB. Twins with Alzheimer’s disease. Arch Neurol 1981; 38: 300-301.
    Dagda RK, Zaucha JA, Wadzinski BE, Strack S. A developmentally regulated, neuron-specific splice variant of the variable subunit Bbeta targets protein phosphatase 2A to mitochondria and modulates apoptosis. J Biol Chem 2003; 278: 24976-24985.
    David G, Abbas N, Stevanin G, Durr A, Yvert G, Cancel G, Weber C, Imbert G, Saudou F, Antoniou E, Drabkin H, Gemmill R, Giunti P, Benomar A, Wood N, Ruberg M, Agid Y, Mandel JL, Brice A. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet 1997; 17: 65-70.
    Desarnaud F, Jakovcevski M, Morellini F, Schachner M. Stress downregulates hippocampal expression of the adhesion molecules NCAM and CHL1 in mice by mechanisms independent of DNA methylation of their promoters. Cell Adh Migr 2008; 2: 38-44.
    Duenas AM, Goold R, Giunti P. Molecular pathogenesis of spinocere¬bellar ataxias. Brain 2006; 129: 1357-1370.
    Eichhorn PJ, Creyghton MP, Bernards R. Protein phosphatase 2A regulatory subunits and cancer. Biochim Biophys Acta 2009; 1795: 1-15.
    Ferringo P, Langan TA, Cohen P. Protein phosphatase 2A1 is the major enzyme in vertebrate cell extracts that dephosphorylates several physiological substrates for cyclin-dependent protein kinases. Mol Biol Cell 1993; 4: 669-677.
    Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suñer D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 2005; 102: 10604-10609.
    Fujigasaki H, Verma IC, Camuzat A, Margolis RL, Zander C, Lebre AS, Jamot L, Saxena R, Anand I, Holmes SE, Ross CA, Dürr A, Brice A. SCA12 is a rare locus for autosomal dominant cerebellar ataxia: a study of an Indian family. Ann Neurol 2001; 49: 117-121.
    Fuso A, Nicolia V, Cavallaro RA, Ricceri L, D'Anselmi F, Coluccia P, Calamandrei G, Scarpa S. B-Vitamin deprivation induces hyperhomocysteinemia and brain S-adenosylhomocsyteine, depletes brain S-adenosylmethionine, and enhances PSEN1 and BACE expression and amyloid-β deposition in mice. Mol Cell Neurosci 2008; 37: 731-746.
    Goedert M. Tau protein and the neurofibrillary pathology of Alzheimer’s disease. Trends Neurosci 1993; 16: 460-465.
    Gong CX, Shaikh S, Wang JZ, Zaidi T, Grundke-Iqbal I, Iqbal K. Phosphatase activity toward abnormally phosphorylated tau: decrease in Alzheimer disease brain. J Neurochem 1995; 65: 732-738.
    Gong CX, Lidsky T, Wegiel J, Zuck L, Grundke-Iqbal I, Iqbal K. Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer’s disease. J Biol Chem 2000; 275: 5535-5544.
    Gong CX, Liu F, Wu G, Rossie S, Wegiel J, Li L, Grundke-Iqbal I, Iqbal K. Dephosphorylation of microtubule-associated protein tau by protein phosphatase 5. J Neurochem 2004; 88: 298-310.
    Gotz J. Tau and transgenic animal models. Brain Res Rev 2001; 35: 266-286.
    Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM. Microtubule-associated protein tau: A component of Alzheimer paired helical filaments. J Biol Chem 1986a; 261: 6084-6089.
    Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule associated protein τ in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 1986b; 83: 4913-4917.
    Haass C, Schlossmacher MG, Hung AY, Vigo-Pelfrey C, Mellon A, Ostaszewski BL, Lieberburg I, Koo EH, Schenk D, Teplow DB. Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature 1992; 359: 322-325.
    Holliday R. Epigenetics: a historical overview. Epigenetics 2006; 1: 76-80.
    Holmes SE, O'Hearn EE, McInnis MG, Gorelick-Feldman DA, Kleiderlein JJ, Callahan C, Kwak NG, Ingersoll-Ashworth RG, Sherr M, Sumner AJ, Sharp AH, Ananth U, Seltzer WK, Boss MA, Vieria-Saecker AM, Epplen JT, Riess O, Ross CA, Margolis RL. Expansion of a novel CAG trinucleotide repeat in the 5' region of PPP2R2B is associated with SCA12. Nat Genet 1999; 23: 391-392.
    Holmes SE, O'Hearn E, Ross CA, Margolis RL. SCA12: an unusual mutation leads to an unusual spinocerebellar ataxia. Brain Res Bull 2001; 56: 397-403.
    Holmes SE, Hwang H, O'Hearn E, Antonarakis SE, Chip S, Strck S, Ross CA, Margolis RL. Genomic structure and splice variants of PPP2R2B the gene associated with spinocerebellar ataxia type 12 (SCA12). Abstract Am J Hum Genet 2002; 71: 973.
    Holmes SE, O'Hearn E, Margolis RL. Why is SCA12 different from other SCAs? Cytogenet Genome Res 2003; 100: 189-197.
    Ikbal K, Grundke-Iqbal I. Alzheimer neurofibrillary degeneration: significance, etiopathogenesis, therapeutics and prevention. J Cell Mol Med 2008; 12: 38-55.
    Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier JM, Weber C, Mandel JL, Cancel G, Abbas N, Durr A, Didierjean O, Stevanin G, Agid Y, Brice A. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet 1996; 14: 285-291.
    Iqbal K, Grundke-Iqbal I, Smith AJ, George L, Tung YC, Zaidi T. Identification and localization of a tau peptide to paired helical filaments of Alzheimer disease. Proc Natl Acad Sci USA 1989; 86: 5646-5650.
    Janssens V, Goris J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signaling. Biochem J 2001; 353: 417-439.
    Kaminsky Z, Wang SC, Petronis P. Complex disease, gender and epigenetics. Ann Med 2006; 38: 530-544.
    Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakami H, Nakamura S, Nishimura M, Akiguchi I, Kimura J, Narumiya S, Kakizuka A. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet 1994; 8: 221-228.
    Kenessey A, Yen SH. The extent of phosphorylation of fetal tau is comparable to that of PHF-tau from Alzheimer paired helical filaments. Brain Res 1993; 629: 40-46.
    Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarashi S, Endo K, Takahashi H, Kondo R, Ishikawa A, Hayashi T, Saito M, Tomoda A, Miike T, Naito H, Ikuta F, Tsuji S. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet 1994; 6: 9-13.
    Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M, Saito M, Yamada M, Takahashi H, Tsuji S. A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum Mol Genet 1999; 8: 2047-2053.
    Koob MD, Moseley ML, Schut LJ, Benzow KA, Bird TD, Day JW, Ranum LP. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet 1999; 21: 379-384.
    Köpke E, Tung YC, Shaikh S, Alonso AC, Iqbal K, Grundke-Iqbal I. Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J Biol Chem 1993; 268: 24374-24384.
    Ksiezak-Reding H, Liu WK, Yen SH. Phosphate analysis and dephosphorylation of modified tau associated with paired helical filaments. Brain Res 1992; 597: 209-219.
    Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, Low HM, Kin Sung KW, Rigoutsos I, Loring J, Wei CL. Dynamic changes in the human methylome during differentiation. Genome research 2010; 20: 320-331.
    Lee VM, Balin BJ, Otvos Jr L, Trojanowski JQ. A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science 1991; 251: 675-678.
    Liddell MB, Lovestone S, Owen MJ. Genetic risk of Alzheimer’s disease: advising relatives. Br J Psychiatry 2001; 178: 7-11.
    Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006; 443: 787-795.
    Liu F, Grundke-Iqbal I, Iqbal K, Gong CX. Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur J Neurosci 2005a; 22: 1942-1950.
    Liu F, Iqbal K, Grundke-Iqbal I, Rossie S, Gong CX. Dephosphorylation of tau by protein phosphatase 5: impairment in Alzheimer’s disease. J Biol Chem 2005b; 280: 1790-1796.
    Martin GM. Epigenetic drift in aging identical twins. Proc Natl Acad Sci U S A 2005; 102: 10413-10414.
    Matsuura T, Yamagata T, Burgess DL, Rasmussen A, Grewal RP, Watase K, Khajavi M, McCall AE, Davis CF, Zu L, Achari M, Pulst SM, Alonso E, Noebels JL, Nelson DL, Zoghbi HY, Ashizawa T. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet 2000; 26: 191-194.
    Mattson MP, Magnus T. Ageing and neuronal vulnerability. Nat Rev Neurosci 2006; 7: 278-294.
    Mayer RE, Hendrix P, Cron P, Matthies R, Stone SR, Goris J, Merlevede W, Hofsteenge J, Hemmings BA. Structure of the 55-kDa regulatory subunit of protein phosphatase 2A: evidence for a neuronal-specific isoform. Biochemistry 1991; 30: 3589-3597.
    Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A, Rozkalne A, Koenigsknecht-Talboo J, Holtzman DM, Bacskai BJ, Hyman BT. Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease. Nature 2008; 451: 720-724.
    Morange, M. The relations between genetics and epigenetics: a historical point of view. Ann. N. Y. Acad. Sci. 2002; 981: 50-60.
    Nee LE, Lippa CF. Alzheimer’s disease in 22 twin pairs–13-year followup: hormonal, infectious and traumatic factors. Dement Geriatr Cogn Disord 1999; 10: 148-151.
    Orr HT, Chung MY, Banfi S, Kwiatkowski TJ Jr, Servadio A, Beaudet AL, McCall AE, Duvick LA, Ranum LP, Zoghbi HY. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type I. Nat Genet 1993; 4: 211-226.
    Pias EK, Aw TY. Early redox imbalance mediates hydroperoxide-induced apoptosis in mitotic competent undifferentiated PC-12 cells. Cell Death Differ 2002; 9: 1007-1016.
    Price NE, Mumby MC. Brain protein serine/threonine phosphatases. Curr Opin Neurobiol 1999; 9: 336-342.
    Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, Pearlman S, Starkman S, Orozco-Diaz G, Lunkes A, DeJong P, Rouleau GA, Auburger G, Korenberg JR, Figueroa C, Sahba S. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 1996; 14: 269-276.
    Sanchez-Ortiz E, Hahm BK, Armstrong DA, Rossie S. Protein phosphatase 5 protects neurons against amyloid β toxicity. J Neurochem 2009; 111: 391-402.
    Santoro MF, Annand RR, Robertson MM, Peng YW, Brady MJ, Mankovich JA, Hackett MC, Ghayur T, Walter G, Wong WW, Giegel DA. Regulation of protein phosphatase 2A activity by caspase-3 during apoptosis. J Biol Chem 1998; 273: 13119-13128.
    Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci 2006; 103: 1412-1417.
    Scarpa S, Fuso A, D'Anselmi F, Cavallaro RA. Presenilin 1 gene silencing by S-adenosylmethionine: a treatment for Alzheimer disease? FEBS Lett 2003; 541: 145-148.
    Schöls L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol 2004; 3: 291-304.
    Seeman MV. Psychopathology in women and men: focus on female hormones. Am J Psychiatry 1997; 154: 1641-1647.
    Selkoe DJ. Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid β-protein. J Alzheimers Dis 2001; 3: 75-80.
    Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D, Sinha S, Schlossmacher M, Whaley J, Swindlehurst C. Isolation and quantification of soluble Alzheimer’s beta-peptide from biological fluids. Nature 1992; 359: 325-327.
    Shenolikar S. Protein serine/threonine phosphatases--new avenues for cell regulation. Annu Rev Cell Biol 1994; 10: 55-86.
    Shiomi K, Takeichi M, Nishida Y, Nishi Y, Uemura T. Alternative cell fate choice induced by low-level expression of a regulator of protein phosphatase 2A in the Drosophila peripheral nervous system. Development 1994; 120: 1591-1599.
    Sontag E, Nunbhakdi-Craig V, Lee G, Bloom GS, Mumby MC. Regulation of the phosphorylation state and microtubule-binding activity of Tau by protein phosphatase 2A. Neuron 1996; 17: 1201-1207.
    Srivastava AK, Choudhry S, Gopinath MS, Roy S, Tripathi M, Brahmachari SK, Jain S. Molecular and clinical correlation in five Indian families with spinocerebellar ataxia 12. Ann Neurol 2001; 50: 796-800.
    Strack S, Zaucha JA, Ebner FF, Colbran RJ, Wadzinski BE. Brain protein phosphatase 2A: developmental regulation and distinct cellular and subcellular localization by B subunits. J Comp Neurol 1998; 392: 515-527.
    Takai D, Jones PA. The CpG island searcher: a new WWW resource. In Silico Biol 2003; 3: 235-240.
    Teive HAG. Spinocerebellar degenerations in Japan: new insights from an epidemiological study. Neuroepidemiology 2009a; 32: 184-185.
    Teive HAG. Spinocerebellar ataxias. Arq Neuropsiquiatr 2009b; 67: 1133-1142.
    Turowski P, Myles T, Hemmings BA, Fernandez A, Lamb NJ. Vimentin dephosphorylation by protein phosphatase 2A is modulated by the targeting subunit B55. Mol Biol Cell 1999; 10: 1997-2015.
    Urbanc B, Cruz L, Le R, Sanders J, Ashe KH, Duff K, Stanley HE, Irizarry MC, Hyman BT. Neurotoxic effects of thioflavin S-positive amyloid deposits in transgenic mice and Alzheimer’s disease. Proc Natl Acad Sci USA 2002; 99: 13990-13995.
    Virshup DM. Protein phosphatase 2A: a panoply of enzymes. Curr Opin Cell Biol 2000; 12: 180-185.
    Wang SC, Oelze B, Schumacher A. Age-specific epigenetic drift in late-onset Alzheimer’s disease. PLoS One 2008; 3: e2698.
    Wu J, Basha MR, Zawia NH. The environment, epigenetics and amyloidogenesis. J Mol Neurosci 2008; 34: 1-7.
    Wu YR, Lin HY, Chen CM, Gwinn-Hardy K, Ro LS, Wang YC, Li SH, Hwang JC, Fang K, Hsieh-Li HM, Li ML, Tung LC, Su MT, Lu KT, Lee-Chen GJ. Genetic testing in spinocerebellar ataxia in Taiwan: expansions of trinucleotide repeats in SCA8 and SCA17 are associated with typical Parkinson’s disease. Clin Genet 2004; 65: 209-214.
    Wullner U. Genes implicated in the pathogenesis of spinocerebellar ataxias. Drugs Today 2003; 39: 927-937.
    Yankner BA, Lu T. Amyloid β-protein toxicity and the pathogenesis of Alzheimer’s disease. J Biol Chem 2009; 284: 4755-4759.
    Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, Dobyns WB, Subramony SH, Zoghbi HY, Lee CC. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the 1A-voltage-dependent calcium channel. Nat Genet 1997; 15: 62-69.

    下載圖示
    QR CODE