研究生: |
蘇安楷 |
---|---|
論文名稱: |
多頻雷射於基質輔助雷射脫附/游離-飛行時間質譜法之開發與應用 Development of Multi-Frequency Laser for the Use in MALDI-TOF Mass Spectrometry |
指導教授: | 林震煌 |
學位類別: |
博士 Doctor |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 196 |
中文關鍵詞: | MALDI 、multi-frequency laser 、mass spectrometry |
論文種類: | 學術論文 |
相關次數: | 點閱:189 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出在基質輔助雷射脫附/游離-飛行時間質譜法(MALDI-TOF MS)中結合多頻雷射配合各種種類基質的新技術。為了誘導出大量的Raman散射雷射,以一經過橢圓偏光的355 nm Nd:YAG雷射激發高壓的氫氣,可以得到其振動與轉動的Raman emissions,其能階分別是4155 cm-1及587 cm-1,而得到的多頻Raman雷射(multi-frequency Raman laser)其波長分佈在246.1~865.9 nm之間。使用此一多頻的雷射源作為離化的光源,並且配合可以吸收不同波長能量的基質,其中包含:4-methoxycinnamic acid (MCA)、-cyano-4-hydroxycinnamic acid (CHCA)、sinapinic acid (SA)、7-(diethylamino)coumarin-3-carboxylic acid (DCCA)、rhodamine 6G及activated carbon等等分別對大小生化分子peptide與protein的標準品做分析測試。上述的各種基質均可以對標準品分析物達到不同的離化效果,其中對於小分子peptide的分析則是發現當以DCCA作為基質時,會有較佳的解析度並且可以減低其質譜雜訊,其原因則是因為DCCA可視為一種 “cold”的能量吸收劑,當分析物被離化在飛行的過程中較不會有碎裂(fragmentation)的情形發生,並且當以多頻雷射代替單一355 nm的作法時其S/N比會有所改善,除此之外對於小分子cyclohexyl methylphosphonic acid及pinacolyl methylphosphonic acid 兩種化學戰劑降解產物的分析發現,本研究首次以DCCA配合多頻雷射進行分析可以達成在地下水中的檢測,但是傳統的CHCA並無法直接做到。故此多頻雷射系統離化光源可以運用於一般化合物的分析並可以研究不同種類的基質其離化效果與其過程會產生的效應。
此外在此亦提出一個以基質輔助雷射脫附游離飛行時間質譜法 作為快速對濫用藥物進行檢測與監控的新方法。本方法中,cetrimonium bromide (CTAB)乃是一種陽離子界面活性劑,被添加到常用的MALDI基質-cyano-4-hydroxycinnamic acid (CHCA)中,此一作法可以對安非他命、甲基安非他命、3,4-methylenedioxy- amphetamine (MDA)、3,4-methylenedioxymethamphetamine(MDMA)、咖啡因、K他命、tramadol作分析並得到十分簡潔的質譜圖,而尿液中的MDMA則是可以其同位素MDMA-D5作為內標物達到定量的分析效果。在分析此一添加內標物的尿液樣品時,其檢量線濃度範圍為0.1~100 ppm,而其線性關係R2可達0.9993,運用本方法可進行真實樣品尿液中DMDA的測定。藉由t-test方法其結果有超過95%的可信度,此一技術可以成功的對濫用的毒品做快速監控,並且可以對吸毒者的尿液做MDMA的定量分析。故此在刑事鑑定分析中與傳統的GC/MS 檢測方法相比,MALDI-TOF MS配合同位素內標的方法,確實可達到快速定性定量的檢測需求。
The method of various matrixes for multi-frequency laser for use in MALDI- TOF MS is reported here for the first time. An elliptically polarized beam of a Nd: YAG laser emitting at 355 nm is used for inducing numerous Raman lasers (including vibrational and rotational Raman emissions for hydrogen; 4155 cm-1 and 587 cm-1-shifts, respectively) generated from 246.1 to 865.9 nm. Using these multi-frequency emissions as ionization source with matrixes which can absorb different wavelength source, including: 4-methoxycinnamic acid (MCA), -cyano-4-hydroxycinnamic acid (CHCA), sinapinic acid (SA), 7-(diethylamino)coumarin-3-carboxylic acid (DCCA), rhodamine 6G and activated carbon, smaller peptide and protein standards were examined, respectively. With all of these matrixes, mass spectra of the analytes could clearly be detected. However, for the peptide standards analysis, it could get the better resolution than others and the noise of the mass spectra also reduced, while DCCA was the using matrix. According to the experimental results, it is proposed that DCCA is suggested a “cold” matrix of energy absorber; doesn’t induce the fragmentation of analytes during the drifting process. The S/N ratios are also improved while multi-frequency laser is used in the study. Furthermore, this method has been used to analyze small molecules, cyclohexyl methylphosphonic acid and pinacolyl methylphosphonic acid (chemical warfare agent degradation products) with DCCA, yet CHCA fails to achieve, for groundwater analysis. Thus the multi-frequency laser system using as an ionization source is practicable to make an analysis and a study of various matrixes ionization effects.
Besides, a novel method for the rapid drug-screening of clandestine tablets by MALDI-TOF mass spectrometry is described. In this method, cetrimonium bromide (CTAB), a cation surfactant, is added to the conventional -cyano-4-hydroxycinnamic acid (CHCA) matrix solution used in preparing the MALDI samples. This procedure permits very clean mass spectra to be collected for amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxy- methamphetamine (MDMA), caffeine, ketamine and tramadol. The quantification of MDMA was achieved using stable-isotope-labeled MDMA (MDMA-D5) as the internal standard. For the analysis of MDMA/MDMA-D5-spiked urine samples, the calibration curve was linear in the range of 0.1-100 ppm with a coefficient of determination, r2, of 0.9993. This assay was used to determine MDMA in actual urine samples. No significant bias is shown between the two methods by t-test at 95% confidence level. The method was used successfully in the rapid drug-screening of actual clandestine tablets, which had been seized from the illicit market, and the quantification of MDMA in suspect urine samples by using stable-isotope-labeled MDMA (MDMA-D5) as the internal standard. The study concludes that MALDI-TOF MS can serve as a reliable and complementary method to GC/MS for use in forensic analysis.
1-4 參考文獻
1. M. Karas, D. Bachmann, F. Hillenkamp, Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal. Chem. 1985, 57, 2935-2939.
2. M. Karas, F. Hillenkamp, Laser desorption ionization of proteins with molecular masses exceeding 10,000 Daltons. Anal. Chem. 1988, 60, 2299-2301.
3. M. Karas, D. Bachmann, U. Bahr, F. Hillenkamp, Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int. J. Mass Spectrom. Ion processes 1987, 78, 53-68.
4. M. Karas, U. Bahr, Laser desorption ionization mass spectrometry of large biomolecules. Trends Anal. Chem. 1990, 9, 321-325.
5. M. Yamashita, J. B. Fenn, Electrospray ion source.-Another variation on the free-jet theme. J. Phys. Chem., 1984, 88, 4451-4459.
6. M. Yamashita, J. B. Fenn, Negative-ion production with the electrospray ion-source. J. Phys. Chem. 1984, 88, 4671-4675.
7. J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, C. M. Whitehouse, Electrospray ionization for mass-spectrometry of large biomolecules. Science 1989, 246, 64-71.
8. D. C. Schriemer, L. Li, Surface analysis of bulk polymers using laser-induced photoelectron ionization with laser desorption in a time-of-flight mass spectrometer. Anal. Chem. 1996, 68, 250-256.
9. P. J. Dyson, A. K. Hearley, B. F. G. Johnson, J. S. McIndoe, P. R. R. Langridge-Smith, Laser desorption ionization versus electrospray ionization mass spectrometry: applications in the analysis of cluster anions. J. Clust. Sci. 2001, 12, 273-283.
10. J. D. Dunn, B. S. Jay, A. Siegel, J. Allison, Photodegradation and laser desorption mass spectrometry for the characterization of dyes used in red pen inks. J. Forensic Sci. 2003, 48, 652-657.
11. R. Tanaka, S. Sato, T. Takanohashi, J. E. Hunt, R. E. Winans, Analysis of the molecular weight distribution of petroleum asphaltenes using laser desorption-mass spectrometry. Energy & Fuels 2004, 18, 1405-1413.
12. T. B. Farmer, R. M. Caprioli, Determination of protein-protein interactions by matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom. 1998, 33, 697-704.
13. D. C. Schriemer, L. Li, Detection of high molecular weight narrow polydisperse polymers up to 1.5 million Daltons by MALDI mass spectrometry. Anal. Chem. 1996, 68, 2721-2725.
14. S. C. Moyer, B. A. Budnik, J. L. Pittman, C. E. Costello, P. B. O’Connor, Attomole peptide analysis by high-pressure matrix-assisted laser desorption/ionization Fourier Transform mass spectrometry. Anal. Chem. 2003, 75, 6449-6454.
15. S. C. Russell, G. Czerwieniec, C. Lebrilla, P. Steele, V. Riot, K. Coffee, M. Frank, E. E. Gard, Achieving high detection sensitivity (14 zmol) of biomolecular ions in bioaerosol mass spectrometry. Anal. Chem. 2005, 77, 4734-4741.
16. K. Tanaka, Y. Ido, S. Akita, Y. Yoshida, T. Yoshida, Detection of high mass molecules by laser desorption time-of-flight mass spectrometry. Proceedings of the Second Japan-China Joint Symposium on Mass Spectrometry 1987, pp.185-188.
17. K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida, T. Yoshida, Protein and polymer analyses up to m/z 100 000 by laser ionization time-of flight mass spectrometry. Rapid Commun. Mass Spectrom. 1988, 2, 151-153.
18. R. Krüger, A. Pfenninger, I. Fournier, M. Glückmann, M. Karas, Analyte incorporation and ionization in matrix-assisted laser desorption/ionization visualized by pH indicator molecular probes. Anal. Chem. 2001, 73, 5812-5821.
19. S. A. Pshenichnyuk, N. L. Asfandiarov, V. S. Fal’ko, V. G. Lukin, Temperature dependencies of negative ions formation by capture of low-energy electrons for some typical MALDI matrices. Int. J. Mass Spectrom. 2003, 227, 259-272.
20. X. Yang, H. Wu, T. Kobayashi, R. J. Solaro, R. B. van Breemen, Enhanced ionization of phosphorylated peptides during MALDI-TOF mass spectrometry. Anal. Chem. 2004, 76, 1532-1536.
21. Y. Dai, R. M. Whittal, L. Li, Two-layer sample preparation: a method for MALDI-MS analysis of complex peptide and protein mixtures. Anal. Chem. 1999, 71, 1087-1091.
22. A. Amini, S. J. Dormady, L. Riggs, F. E. Regnier, The impact of buffers and surfactants from micellar electrokinetic chromatography on matrix-assisted laser desorption ionization (MALDI) mass spectrometry of peptides. Effect of buffer type and concentration on mass determination by MALDI-time-of-flight mass spectrometry. J. Chromatogr. A 2000, 894, 345-355.
23. W. C. Wiley, I. H. McLaren, Time-of-flight mass spectrometer with improved resolution. Rev. Sci. Instrum. 1955, 26, 1150-1157.
24. J. Y. Oh, J. H. Moon, Y. H. Lee, S.-W. Hyung, S.-W. Lee, M. S. Kim, Photodissociation tandem mass spectrometry at 266nm of an aliphatic peptide derivatized with phenyl isothiocyanate and 4-sulfophenyl isothiocyanate. Rapid Commun. Mass Spectrom. 2005, 19, 1283-1288.
25. Y.-S. Lin, Y.-C. Chen, Laser desorption/ionization time-of-flight mass spectrometry on sol-gel-derived 2,5-dihydroxybenzoic acid film. Anal. Chem. 2002, 74, 5793-5798.
26. M. Mank, B. Stahl, G. Boehm, 2,5-Dihydroxybenzoic acid butylamine and other ionic liquid matrixes for enhanced MALDI-MS analysis of biomolecules. Anal. Chem. 2004, 76, 2938-2950.
27. I. P. Smirnov, X. Zhu, T. Taylor, Y. Huang, P. Ross, I. A. Papayanopoulos, S. A. Martin, D. J. Pappin, Suppression of -cyano-4-hydroxycinnamic acid matrix clusters and reduction of chemical noise in MALDI-TOF mass spectrometry. Anal. Chem. 2004, 76, 2958-2965.
28. A. Pashkova, E. Moskovets, B. L. Karger, Coumarin tags for improved Analysis of peptides by MALDI-TOF MS and MS/MS. Enhancement in MALDI MS signal intensities. Anal. Chem. 2004, 76, 4550-4557.
29. J. M. Kaufman, A. J. Jaber, M. J. Stump, W. J. Simonsick Jr., C. L. Wilkins, Interference from multiple cations in MALDI-MS spectra of copolymers. Int. J. Mass Spectrom. 2004, 234, 153-160.
30. J. Kim, K. Paek, W. Kang, Visible surface-assisted laser desorption/ionization mass spectrometry of small macromolecules deposited on the graphite plate. Bull. Korean Chem. Soc. 2002, 23, 315-319.
31. W. Kang, J. Kim, K. P. K. S. Shin, Matrix- and surface-assisted laser desorption/ionization time-of-flight mass spectrometry of dibromocalix[4]crown ether. Rapid Commun. Mass Spectrom. 2001, 15, 941-944.
32. D. S. Cornett, M. A. Duncan, I. J. Amster, Liquid mixtures for matrix-assisted laser desorption. Anal. Chem. 1993, 65, 2608-2613.
33. M. Schurenberg, K. Dreisewerd, F. Hillenkamp, Laser desorption/ionization mass spectrometry of peptides and proteins with particle suspension matrixes. Anal. Chem. 1999, 71, 221-229.
34. V. V. Golovlev, S. H. Lee, S. L. Allman, N. I. Taranenko, N. R. Isola, C. H. Chen, Nonresonant MALDI of oligonucleotides: mechanism of ion desorption. Anal. Chem. 2001, 73, 809-812.
35. C. E. V. Seggern, R. J. Cotter, Fragmentation studies of noncovalent sugar-sugar complexes by infrared atmospheric pressure MALDI. J. Am. Soc. Mass Spectrom. 2003, 14, 1158–1165.
36. Y. Xu, M. W. Little, D. J. Rousell, J. L. Laboy, K. K. Murray, Direct from polyacrylamide gel infrared laser desorption/ionization. Anal. Chem. 2004, 76, 1078-1082.
37. S. L. Luxembourg, L. A. McDonnell, T. H. Mize, R. M. A. Heeren, Infrared mass spectrometric imaging below the diffraction limit. J. Proteome Res. 2005, 4, 671-673.
38. M. Karas, M. Glückmann, J. Schäfer, Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors. J. Mass Spectrom. 2000, 35, 1-12.
39. R. Knochenmuss, A. Stortelder, K. Breuker, R. Zenobi, Secondary ion–molecule reactions in matrix-assisted laser desorption/ionization. J. Mass Spectrom. 2000, 35, 1237-1245.
40. G. Ohanessian, Interaction of MALDI matrix molecules with Na+ in the gas phase. Int. J. Mass Spectrom. 2002, 219, 577-592.
41. T. D. McCarley, R. L. McCarley, P. A. Limbach, Electron-transfer ionization in matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 1998, 70, 4376-4379.
42. R. Zenobi, R. Knochenmuss, Ion formation in MALDI mass spectrometry. Mass Spectrom. Rev. 1998, 17, 337-366.
43. M. Karas, R. Krüger, Ion formation in MALDI: the cluster ionization mechanism. Chem. Rev. 2003, 103, 427-439.
44. R. Knochenmuss, Photoionization pathways and free electrons in UV-MALDI. Anal. Chem. 2004, 76, 3179-3184.
45. G. Westmacott, W. Ens, F. Hillenkamp, K. Dreisewerd, M. Schürenberg, The influence of laser fluence on ion yield in matrix-assisted laser desorption ionization mass spectrometry. Int. J. Mass Spectrom. 2002, 221, 67-81.
46. S. P. Mirza, N. P. Raju, M. Vairamani, Estimation of the proton affinity values of fifteen matrix-assisted laser desorption/ionization matrices under electrospray ionization conditions using the kinetic method. J. Am. Soc. Mass Spectrom. 2004, 15, 431-435.
47. E. Schulz, M. Karas, F. Rosu, V. Gabelica, Influence of the matrix on analyte fragmentation in atmospheric pressure MALDI. J. Am. Soc. Mass Spectrom. 2006, 17, 1005-1013.
48. A. L. Schawlow, C. H. townes, Infrared and optical masers. Phys. Rev. 1958, 112, 1940-1949.
49. T. Uchimura, T. Onoda, C.-H. Lin, T. Imasaka, The generation of a tunable laser emission in the vacuum ultraviolet and its application to supersonic jet/ multiphoton ionization mass spectrometry. Rev. Sci. Instrum. 1999, 70, 3254-3258.
50. L. L. Losev, Y. Yoshimura, H. Otsuka, Y. Hirakawa, T. Imasaka, A multipass hydrogen Raman shifter for the generation of broadband multifrequencies. Rev. Sci. Instrum. 2002, 73, 2200-2202.
51. F. Benabid, J. C. Knight, G. Antonopoulos, P. St. J. Russell, Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 2002, 298, 399-402.
52. F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, F. Couny, Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen. Phys. Rev. Lett. 2004, 93, 123903-1~4.
53. W.-J. Chen, A. H. Kung, Tunable deep-ultraviolet source generated by scattering off adiabatically prepared Raman coherence in hydrogen gas. Opt. Lett. 2005, 30, 2608-2610.
54. C.-H. Lin, T. Ohnishi, T. Imasaka, Vibrational stimulated Raman emission from dibromomethane as seed beam for four-wave rotational Raman mixing in hydrogen. Jpn. J. Appl. Phys. 1997, 36, 412-414.
2-5 參考文獻
1. M. Karas, F. Hillenkamp, Laser desorption ionization of proteins with molecular masses exceeding 10,000 Daltons. Anal. Chem. 1988, 60, 2299-2301.
2. M. Fountoulakis, L. Suter, Proteomic analysis of the rat liver. J. Chromatogr. B 2002, 782, 197-218.
3. J. J. Jones, M. J. Stump, R. C. Fleming, J. O. Lay Jr., C. L. Wilkins, Investigation of MALDI-TOF and FT-MS techniques for analysis of Escherichia coli whole cells. Anal. Chem. 2003, 75, 1340-1347.
4. M. Z. Wang, B. Howard, N. J. Campa, E. F. Patz Jr., M. C. Fitzgerald, Analysis of human serum proteins by liquid phase isoelectric focusing and matrix-assisted laser desorption/ionization-mass spectrometry. Proteomics 2003, 3, 1661-1666.
5. B. A. Howard, M. Z. Wang, M. J. Campa, C. Corro, M. C. Fitzgerald, E. F. Patz Jr., Identification and validation of a potential lung cancer serum biomarker detected by matrix-assisted laser desorption/ionization-time of flight spectra analysis. Proteomics 2003, 3, 1720-1724.
6. S. Laugesen, P. Roepstorff, Combination of two matrices results in improved performance of MALDI MS for peptide mass mapping and protein analysis. J. Am. Soc. Mass Spectrom. 2003, 14, 992-1002.
7. D. Mims, D. Hercules, Quantification of bile acids directly from urine by MALDI-TOF-MS. Anal. Bioanal. Chem. 2003, 375, 609-616.
8. X. Yang, H. Wu, T. Kobayashi, R. J. Solaro, R. B. van Breemen, Enhanced ionization of phosphorylated peptides during MALDI TOF mass spectrometry. Anal. Chem. 2004, 76, 1532-1536.
9. S. C. Russell, G. Czerwieniec, C. Lebrilla, P. Steele, V. Riot, K. Coffee, M. Frank, E. E. Gard, Achieving high detection sensitivity (14 zmol) of biomolecular ions in bioaerosol mass spectrometry. Anal. Chem. 2005, 77, 4734-4741.
10. L. H. Cohen, A. I. Gusev, Small molecule analysis by MALDI mass spectrometry. Anal. Bioanal. Chem. 2002, 373, 571-586.
11. Z. Guo, Q. Zhang, H. Zou, B. Guo, J. Ni, A method for the analysis of low-mass molecules by MALDI-TOF mass spectrometry. Anal. Chem. 2002, 74, 1637-1641.
12. J. E. Dally, J. Gorniak, R. Bowie, C. M. Bentzley, Quantitation of underivatized free amino acids in mammalian cell culture media using matrix assisted laser desorption ionization time-of-flight mass spectrometry. Anal. Chem. 2003, 75, 5046-5053.
13. M. Cui, M. A. McCooeye, C. Fraser, Z. Mester, Quantitation of lysergic acid diethylamide in urine using atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry. Anal. Chem. 2004, 76, 7143-7148.
14. M. Zabet-Moghaddam, E. Heinzle, A. Tholey, Qualitative and quantitative analysis of low molecular weight compounds by ultraviolet matrix-assisted laser desorption/ionization mass spectrometry using ionic liquid matrices. Rapid Commun. Mass Spectrom. 2004, 18, 141-148.
15. G. A. Grant, S. L. Frison, P. Sporns, A sensitive method for detection of sulfamethazine and N4-acetylsulfamethazine residues in environmental samples using solid phase immunoextraction coupled with MALDI-TOF MS. J. Agric. Food Chem. 2003, 51, 5367-5375.
16. P. J. Lee, W. Chen, J. C. Gebler, Qualitative and quantitative analysis of small amine molecules by MALDI-TOF mass spectrometry through charge derivatization. Anal. Chem. 2004, 76, 4888-4893.
17. G. McCombie, R. Knochenmuss, Small-molecule MALDI using the matrix suppression effect to reduce or eliminate matrix background interferences. Anal. Chem. 2004, 76, 4990-4997.
18. M. Mank, B. Stahl, G. Boehm, 2,5-Dihydroxybenzoic acid butylamine and other ionic liquid matrixes for enhanced MALDI-MS analysis of biomolecules. Anal. Chem. 2004, 76, 2938-2950.
19. W.-Y. Chen, L.-S. Wang, H.-T. Chiu, Y.-C. Chen, Carbon nanotubes as affinity probes for peptides and proteins in MALDI MS analysis. J. Am. Soc. Mass Spectrom. 2004, 15, 1629-1635.
20. I. P. Smirnov, X. Zhu, T. Taylor, Y. Huang, P. Ross, I. A. Papayanopoulos, S. A. Martin, D. J. Pappin, Suppression of -cyano-4-hydroxycinnamic acid matrix clusters and reduction of chemical noise in MALDI-TOF mass spectrometry. Anal. Chem. 2004, 76, 2958-2965.
21. A. Pashkova, E. Moskovets, B. L. Karger, Coumarin tags for improved Analysis of peptides by MALDI-TOF MS and MS/MS. Enhancement in MALDI MS signal intensities. Anal. Chem. 2004, 76, 4550-4557.
22. J. M. Kaufman, A. J. Jaber, M. J. Stump, W. J. Simonsick Jr., C. L. Wilkins, Interference from multiple cations in MALDI-MS spectra of copolymers. Int. J. Mass Spectrom. 2004, 234, 153-160.
23. D. S. Cornett, M. A. Duncan, I. J. Amster, Liquid mixtures for matrix-assisted laser desorption. Anal. Chem. 1993, 65, 2608-2613.
24. W. Kang, J. Kim, K. P. K. S. Shin, Matrix- and surface-assisted laser desorption/ionization time-of-flight mass spectrometry of dibromocalix[4]crown ether. Rapid Commun. Mass Spectrom. 2001, 15, 941-944.
25. J. Kim, K. Paek, W. Kang, Visible surface-assisted laser desorption/ionization mass spectrometry of small macromolecules deposited on the graphite plate. Bull. Korean Chem. Soc. 2002, 23, 315-319.
26. V. V. Golovlev, S. H. Lee, S. L. Allman, N. I. Taranenko, N. R. Isola, C. H. Chen, Nonresonant MALDI of oligonucleotides: mechanism of ion desorption. Anal. Chem. 2001, 73, 809-812.
27. H. Kawano, C.-H. Lin, T. Imasaka, Generation of high-order rotational lines by four-wave Raman mixing using a high-power picosecond Ti:Sapphire laser. Appl. Phys. B 1996, 63, 121-124.
28. S. Kawasaki, T. Imasaka, N. Ishibashi, two-color stimulated Raman effect of para-hydrogon. J. Opt. Soc. Am. B 1991, 8, 1461-1463.
29. M. Nishida, C.-H. Lin, T. Imasaka, Generation of multifrequency laser emission and its application as an excitation source in supersonic jet spectrometry. Anal. Chem. 1993, 65, 3326-3330.
30. N. Takeyasu, C.-H. Lin, T. Imasaka, Multiplication of spectral lines generated by two-color stimulated Raman effect. Opt. Rev. 1996, 3, 549-551.
31. T. Uchimura, T. Onoda, C.-H. Lin, T. Imasaka, The generation of a tunable laser emission in the vacuum ultraviolet and its application to supersonic jet/multiphoton ionization mass spectrometry, Rev. Sci. Instrum. 1999, 70, 3254-3258.
32. S. Katzman, E. Zubritsky, Rainbow stars: a spectrum of possibilities. Anal. Chem. A-pages 2001, 73, 357A-359A.
33. L. L. Losev, Y. Yoshimura, H. Otsuka, Y. Hirakawa, T. Imasaka, A multipass hydrogen Raman shifter for the generation of broadband multifrequencies. Rev. Sci. Instrum. 2002, 73, 2200-2202.
34. D. E. Otten, A. J. Trevitt, B. D. Nichols, G. F. Metha, M. A. Buntine, Infrared laser desorption of hydroquinone from a water-ethanol liquid beam. J. Phys. Chem. A 2003, 107, 6130-6135.
35. G. R. Kinsel, L. M. Preston, D. H. Russell, Fragmentation of vitamin B12 during 337 nm matrix assisted laser desorption ionization. Biol. Mass Spectrom. 1994, 23, 205-211.
36. M. Karas, U. Bahr, K. Strupat, F. Hillenkamp, A. Tsarbopoulos, B. N. Pramanik, Matrix dependence of metastable fragmentation of glycoproteins in MALDI TOF mass spectrometry. Anal. Chem. 1995, 67, 675-679.
37. K. F. Medzihradszky, J. M. Campbell, M. A. Baldwin, A. M. Falick, P. Juhasz, M. L. Vestal, A. L. Burlingame, The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer. Anal. Chem. 2000, 72, 552-558.
38. G. Luo, I. Marginean, A. Vertes, Internal energy of ions generated by matrix-assisted laser desorption/ionization. Anal. Chem. 2002, 74, 6185-6190.
39. A. Vertes, G. Luo, L. Ye, Y. Chen, I. Marginean, Laser pulse length dependence of internal energy transfer in UV-MALDI-MS. Appl. Phys. A 2004, 79, 823-825.
40. R. Knochenmuss, R. Zenobi, MALDI ionization: the role of in-plume processes. Chem. Rev. 2003, 103, 441-452.
41. F. Benabid, J. C. Knight, G. Antonopoulos, P. St. J. Russell, Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 2002, 298, 399-402.
3-5 參考文獻
1. R. M. Black, R. W. Read, Analysis of degradation products of organophosphorus chemical warfare agents and related compounds by liquid chromatography-mass spectrometry using electrospray and atmospheric pressure chemical ionization. J. Chromatogr. A 1998, 794, 244-244.
2. P. A. D’Agostino, J. R. Hancock, L. R. Provost, Determination of sarin, soman and their hydrolysis products in soil by packed capillary liquid chromatography- electrospray mass spectrometry. J. Chromatogr. A 2001, 912, 291-299.
3. P. A. D’Agostino, C. L. Chenier, J. R. Hancock, Packed capillary liquid chromatography-electrospray mass spectrometry of snow contaminated with sarin. J. Chromatogr. A 2002, 950, 149-256.
4. P. A. D’Agostino, J. R. Hancock, C. L. Chenier, Mass spectrometric analysis of chemical warfare agents and their degradation products in soil and synthetic samples. Eur. J. Mass Spectrom. 2003, 9, 609-18.
5. M. Kataoka, K. Tsuge, H. Takesako, T. Hamazaki, Y. Seto, Effect of pedological characteristics on aqueous soil extraction recovery and tert-butyldimethyl- silylation yield for gas chromatography-mass spectrometry of nerve gas hydrolysis products from soils. Environ. Sci. Technol. 2001, 35, 1823-1829.
6. J. R. Smith, M. L. Shih, E. O. Price, G. E. Platoff, J. J. Schlager, Army medical laboratory telemedicine: role of mass spectrometry in telediagnosis for chemical and biological defense. J. Appl. Toxicol. 2001, 21, S35-S41.
7. G. L. Kimm, G. L. Hook, P. A. Smith, Application of headspace solid-phase microextraction and gas chromatography-mass spectrometry for detection of the chemical warfare agent bis(2-chloroethyl) sulfide in soil. J. Chromatogr. A 2002, 971, 185-91.
8. T. J. Reddy, U. V. Saradhil, S. Prabhakar, M. Vairamani, Trace level detection and identification of chemicals related to the chemical weapons convention from complex organic samples. J. Chromatogr. A 2004, 1038, 225-230.
9. J. Riches, I. Morton, R. W. Read, R. M. Black, The trace analysis of alkyl alkylphosphonic acids in urine using gas chromatography-ion trap negative ion tandem mass spectrometry. J. Chromatogr. B 2005, 816, 251-258.
10. C. Montauban, A. Begos, B. Bellier, Extraction of nerve agent VX from soils. Anal. Chem. 2004, 76, 2791-2797.
11. M. Palit, D. Pardasani, A. K. Gupta, D. K. Dubey, Application of single drop microextraction for analysis of chemical warfare agents and related compounds in water by gas chromatography/mass spectrometry. Anal. Chem. 2005, 77, 711-717.
12. D. Pardasani, M. Palit, A. K. Gupta, P. Shakya, K. Sekhar, D. K. Dubey, Sample preparation of organic liquid for off-site analysis of chemical weapons convention related compounds. Anal. Chem. 2005, 77, 1172-1176.
13. W. E. Steiner, B. H. Clowers, P. E. Haigh, H. H. Hill, Secondary ionization of chemical warfare agent simulants: atmospheric pressure ion mobility time-of- flight mass spectrometry. Anal. Chem. 2003, 75, 6068-6076.
14. W. E. Steiner, B. H. Clowers, L. M. Matz, W. F. Siems, H. H. Hill Jr., Rapid screening of aqueous chemical warfare agent degradation products: ambient pressure ion mobility mass spectrometry. Anal. Chem. 2002, 74, 4343-4356.
15. W. E. Steiner, S. J. Klopsch, W. A. English, B. H. Clowers, H. H. Hill, Detection of a chemical warfare agent simulant in various aerosol matrixes by ion mobility time-of-flight mass spectrometry. Anal. Chem. 2005, 77, 4792-4799.
16. A. B. Kanu, P. E. Haigh, H. H. Hill, Surface detection of chemical warfare agent simulants and degradation products. Anal. Chim. Acta 2005, 553, 148-159.
17. Y. Zhou, B. Yu, E. Shiu, K. Levon, Potentiometric sensing of chemical warfare agents: surface imprinted polymer integrated with an indium tin oxide electrode. Anal. Chem. 2004, 76, 2689-2693.
18. G. Liu, Y. Lin, Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents. Anal. Chem. 2005, 77, 5894-5901.
19. J. E. Melanson, C. A. Boulet, C. A. Lucy, Indirect laser-induced fluorescence detection for capillary electrophoresis using a violet diode laser. Anal. Chem. 2001, 73, 1809-1813.
20. Z.-H. Meng, Q. Liu, Determination of degradation products of nerve agents in human serum by solid phase extraction using molecularly imprinted polymer Anal. Chim. Acta 2001, 435, 121-127.
21. T. E. Rosso, P. C. Bossle, Capillary ion electrophoresis screening of nerve agent degradation products in environmental samples using conductivity detection. J. Chromatogr., A 1998, 824, 125-134.
22. E. W. J. Hooijschuur, C. E. Kientz, U. A. Brinkman Th., Application of microcolumn liquid chromatography and capillary electrophoresis with flame photometric detection for the screening of degradation products of chemical warfare agents in water and soil. J. Chromatogr. A 2001, 928, 187-199.
23. J. Wang, M. Pumera, G. E. Collins, A. Mulchandani, Measurements of chemical warfare agent degradation products using an electrophoresis microchip with contactless conductivity detector. Anal. Chem. 2002, 74, 6121-6125.
24. J. Wang, M. P. Chatrathi, Capillary electrophoresis microchips for separation and detection of organophosphate nerve agents. Anal. Chem. 2001, 73, 1804-1808.
25. R. Knochenmuss, R. Zenobi, MALDI ionization: the role of in-plume processes. Chem. Rev. 2003, 103, 441-452.
26. G. McCombie, R. Knochenmuss, Small-molecule MALDI using the matrix suppression effect to reduce or eliminate matrix background interferences. Anal. Chem. 2004, 76, 4990-4997.
27. G. Schlosser, G. Pocsfalvi, E. Huszar, A. Malorni, F. Hudecz, MALDI-TOF mass spectrometry of a combinatorial peptide library: effect of matrix composition on signal suppression. J. Mass Spectrom. 2005, 40, 1590-1594.
28. R. Ullmer, A. Plematl, A. Rizzi, Derivatization by 6-aminoquinolyl-N-hydroxy- succinimidyl carbamate for enhancing the ionization yield of small peptides and glycopeptides in matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry. Rapid. Commun. Mass Spectrom. 2006, 20, 1469-1479.
4-5 參考文獻
1. T. Kraemer, R. Wennig, H. H. Maurer, The antispasmodic drug mebeverine leads to positive amphetamine results by fluorescence polarization immunoassay (FPIA)-studies on the toxicological analysis of urine by FPIA and GC-MS. J. Anal. Toxicol. 2001, 25, 333-338.
2. D. Felscher, K. Schulz, Screening of amphetamine/methamphetamine and their derivatives in urine using FPIA and Triage 8 and the Scope and limits of a subsequent identification by means of the REMEDi HS system. J. Forensic. Sci. 2000, 45, 1327-1331.
3. T. Kraemer, G. A. Theis, A. A. Weber, H. H. Maurer, Studies on the metabolism and toxicological detection of the amphetamine-like anorectic fenproporex in human urine by gas chromatography-mass spectrometry and fluorescence polarization immunoassay. J. Chromatogr. B 2000, 738, 107-118.
4. V. Maresova, J. Hampl, Z. Chundela, F. Zrcek, M. Polasek, J. Chadt, The identification of a chlorinated MDMA. J. Anal. Toxicol. 2005, 29, 353-358.
5. L. Antonilli, C. Suriano, M. C. Grassi, P. Nencini, Analysis of cocaethylene, benzoylecgonine and cocaine in human urine by high-performance thin-layer chromatography with ultraviolet detection: a comparison with high-performance liquid chromatography. J. Chromatogr. B 2001, 751, 19-27.
6. N. Kato, H. Kubo, H. Homma, Fluorescence analysis of para-hydroxy- methamphetamine in urine by thin-layer chromatography. Anal. Sci. 2005, 21, 1117-1119.
7. M. Concheiro, A. de Castro, O. Quintela, M. Lopez-Rivadulla, A. Cruz, Determination of MDMA, MDA, MDEA and MBDB in oral fluid using high performance liquid chromatography with native fluorescence detection. Forensic Sci. Int. 2005, 150, 221-226.
8. M. Wada, S. Nakamura, M. Tomita, M. N. Nakashima, K. Nakashima, Determination of MDMA and MDA in rat urine by semi-micro column HPLC-fluorescence detection with DBD-F and their monitoring after MDMA administration to rat. Luminescence 2005, 20, 210-215.
9. T.-Y. Wu, M.-R. Fuh, Determination of amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxyethylamphetamine, and 3,4-methylenedioxymethamphetamine in urine by online solid-phase extraction and ion-pairing liquid chromatography with detection by electrospray tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 775-780.
10. C. Chafer-Pericas, P. Campins-Falco, R. Herraez-Hernandez, Application of solid-phase microextraction combined with derivatization to the determination of amphetamines by liquid chromatography. Anal. Biochem. 2004, 333, 328-335.
11. A. Kaddoumi, R. Kikura-Hanajiri, K. Nakashima, High-performance liquid chromatography with fluorescence detection for the simultaneous determination of 3,4-methylenedioxymethamphetamine, methamphetamine and their metabolites in human hair using DIB-Cl as a label. Biomed. Chromatogr. 2004, 18, 202-204.
12. R. Stanaszek, W. Piekoszewski, Simultaneous determination of eight underivatized amphetamines in hair by high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (HPLC-APCI-MS). J. Anal. Toxicol. 2004, 28, 77-85.
13. G. Boatto, M. V. Faedda, A. Pau, B. Asproni, S. Menconi, R. Cerri, Determination of amphetamines in human whole blood by capillary electrophoresis with photodiode array detection. J. Pharm. Biomed. Anal. 2002, 29, 1073-1080.
14. E. Szoko, T. Tabi, T. Borbas, B. Dalmadi, K. Tihanyi, K. Magyar, Assessment of the N-oxidation of deprenyl, methamphetamine, and amphetamine enantiomers by chiral capillary electrophoresis: an in vitro metabolism study. Electrophoresis 2004, 25, 2866-2875.
15. R. Theurillat, M. Knobloch, O. Levionnois, P. Larenza, M. Mevissen, W. Thormann, Characterization of the stereoselective biotransformation of ketamine to norketamine via determination of their enantiomers in equine plasma by capillary electrophoresis. Electrophoresis 2005, 26, 3942-3951.
16. J. Caslavska, W. Thormann, Monitoring of drugs and metabolites in body fluids by capillary electrophoresis with XeHg lamp-based and laser-induced fluorescence detection. Electrophoresis 2004, 25, 1623-1631.
17. E. Cognard, S. Bouchonnet, C. Staub, Validation of a gas chromatography-Ion trap tandem mass spectrometry for simultaneous analyse of cocaine and its metabolites in saliva. J. Pharm. Biomed. Anal. 2006, 41, 925-934.
18. R. H. Lowe, A. J. Barnes, E. Lehrmann, W. J. Freed, J. E. Kleinman, T. M. Hyde, M. M. Herman, M. A. Huestis, A validated positive chemical ionization GC/MS method for the identification and quantification of amphetamine, opiates, cocaine, and metabolites in human postmortem brain. J. Mass Spectrom. 2006, 41, 175-184.
19. K. B. Scheidweiler, M. A. Huestis, A validated gas chromatographic-electron impact ionization mass spectrometric method for methylenedioxy- methamphetamine (MDMA), methamphetamine and metabolites in oral fluid. J. Chromatogr. B 2006, 835, 90-99.
20. K. L. Klette, M. H. Jamerson, C. L. Morris-Kukoski, A. R. Kettle, J. J. Snyder, Rapid simultaneous determination of amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine, and 3,4-methylenedioxyethylamphetamine in urine by fast gas chromatography-mass spectrometry. J. Anal. Toxicol. 2005, 29, 669-674.
21. B. Mitrevski, Z. Zdravkovski, Rapid and simple method for direct determination of several amphetamines in seized tablets by GC-FID. Forensic Sci. Int. 2005, 152, 199-203.
22. M. K. Huang, C. Liu, J. H. Li, S. D. Huang, Quantitative detection of ketamine, norketamine, and dehydronorketamine in urine using chemical derivatization followed by gas chromatography-mass spectrometry. J. Chromatogr. B 2005, 820, 165-173.
23. J. L. Villamor, A. M. Bermejo, P. Fernandez, M. J. Tabernero, A new GC-MS method for the determination of five amphetamines in human hair. J. Anal. Toxicol. 2005, 29, 135-139.
24. N. T. Lu, B. G. Taylor, Drug screening and confirmation by GC-MS: comparison of EMIT II and Online KIMS against 10 drugs between US and England laboratories. Forensic Sci. Int. 2006, 157, 106-116.
25. C. Gambelunghe, R. Rossi, C. Ferranti, R. Rossi, M. Bacci, Hair analysis by GC/MS/MS to verify abuse of drugs. J. Appl. Toxicol. 2005, 25, 205-211.
26. T. Gunnar, K. Ariniemi, P. Lillsunde, Validated toxicological determination of 30 drugs of abuse as optimized derivatives in oral fluid by long column fast gas chromatography/electron impact mass spectrometry. J. Mass Spectrom. 2005, 40, 739-753.
27. G. Frison, L. Tedeschi, D. Favretto, A. Reheman, S. D. Ferrara, Gas chromatography/mass spectrometry determination of amphetamine-related drugs and ephedrines in plasma, urine and hair samples after derivatization with 2,2,2-trichloroethyl chloroformate. Rapid Commun. Mass Spectrom. 2005, 19, 919-927.
28. W. E. Brewer, R. C. Galipo, K. W. Sellers, S. L. Morgan, Analysis of cocaine, benzoylecgonine, codeine, and morphine in hair by supercritical fluid extraction with carbon dioxide modified with methanol. Anal. Chem. 2001, 73, 2371-2376
29. H.-Y. Kao, Y.-N. Su, H.-K. Liao, M.-S. Liu, Y.-J. Chen, Determination of SMN1/SMN2 gene dosage by a quantitative genotyping platform combining capillary electrophoresis and MALDI-TOF mass spectrometry. Clin. Chem. 2006, 52, 361-369.
30. P.-H. Chou, S.-H. Chen, H.-K. Liao, P.-C. Lin, G.-R. Her, A.-C. Lai, J.-H. Chen, C.-C. Lin, Y.-J. Chen, Nanoprobe-based affinity mass spectrometry for selected protein profiling in human plasma. Anal. Chem. 2005, 77, 5990-5997.
31. J. G. Wilkes, D. A. Buzatu, D. J. Dare, Y. P. Dragan, M. P. Chiarelli, R. D. Holland, M. Beaudoin, T. M. Heinze, R. Nayak, A. A. Shvartsburg, Improved cell typing by charge-state deconvolution of matrix-assisted laser desorption/ionization mass spectra. Rapid Commun. Mass Spectrom. 2006, 20, 1595-1603.
32. R. Suriano, Y. Lin, B. T. Ashok, S. D. Schaefer, S. P. Schantz, J. Geliebter, R. K. Tiwari, Pilot study using SELDI-TOF-MS based proteomic profile for the identification of diagnostic biomarkers of thyroid proliferative diseases. J. Proteome Res. 2006, 5, 856-861.
33. D. Finnskog, K. Jaras, A. Ressine, J. Malm, G. Marko-Varga, H. Lilja, T. Laurell, High-speed biomarker identification utilizing porous silicon nanovial arrays and MALDI-TOF mass spectrometry. Electrophoresis 2006, 27, 1093-1103.
34. J. Brunner, J. K. Barton, Site-specific DNA photocleavage by rhodium intercalators analyzed by MALDI-TOF mass spectrometry. J. Am. Chem. Soc. 2006, 128, 6772-6773.
35. J. Mengel-Jorgensen, J. J. Sanchez, C. Borsting, F. Kirpekar, N. Morling, Typing of multiple single-nucleotide polymorphisms using ribonuclease cleavage of DNA/RNA chimeric single-base extension primers and detection by MALDI-TOF mass spectrometry. Anal. Chem. 2005, 77, 5229-5235.
36. L. Sleno L, D. A. Volmer, Assessing the properties of internal standards for quantitative matrix-assisted laser desorption/ionization mass spectrometry of small molecules. Rapid Commun. Mass Spectrom. 2006, 20, 1517-1524.
37. J. Gobey, M. Cole, J. Janiszewski, T. Covey, T. Chau, P. Kovarik, J. Corr, Characterization and performance of MALDI on a triple quadrupole mass spectrometer for analysis and quantification of small molecules. Anal. Chem. 2005, 77, 5643-5654.
38. A. K. Mullen, M. R. Clench, S. Crosland, K. R. Sharples, Determination of agrochemical compounds in soya plants by imaging matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 2507-2516.
39. L. Sleno L, D. A. Volmer, Some fundamental and technical aspects of the quantitative analysis of pharmaceutical drugs by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 1928-1936.
40. Z. Guo, Q. Zhang, H. Zou, B. Guo, J. Ni, A method for the analysis of low-mass molecules by MALDI-TOF mass spectrometry. Anal. Chem. 2002, 74, 1637-1641.
41. J. Wei, J. M. Buriak, G. Siuzdak, Desorption-ionization mass spectrometry on porous silicon. Nature 1999, 399, 243-246.
42. W.-Y. Chen, L.-S. Wang, H.-T. Chiu, Y.-C. Chen, C.-Y. Lee, Carbon nanotubes as affinity probes for peptides and proteins in MALDI MS analysis. J. Am. Soc. Mass Spectrom. 2004, 15, 1629-1635.
43. R. Knochenmuss, R. Zenobi, MALDI ionization: the role of in-plume processes. Chem. Rev. 2003, 103, 441-452.
44. E. Krause, H. Wenschuh, P. R. Jungblut, The dominance of arginine-containing peptides in MALDI-derived tryptic mass fingerprints of proteins. Anal. Chem. 1999, 71, 4160-4165.
5-5 參考文獻
1. J. L. Valentine, R. Middleton, GC-MS identification of sympathomimetic amine drugs in urine: rapid methodology. applicable for emergency clinical toxicology. J. Anal. Toxicol. 2000, 24, 211-222.
2. C. Jurado, M. P. Gimenez, T. Soriano, M. Menendez, M. Repetto, Rapid analysis of amphetamine, methamphetamine, MDA, and MDMA in urine using solid-phase microextraction, direct on-fiber derivatization, and analysis by GC-MS. J. Anal. Toxicol. 2000, 24, 11-16.
3. M. Pujadas, S. Pichini, S. Poudevida, E. Menoyo, P. Zuccaro, M. Farre, R. de la Torre, Development and validation of a gas chromatography-mass spectrometry assay for hair analysis of amphetamine, methamphetamine and methylenedioxy derivatives. J. Chromatogr. B 2003, 798, 249-255.
4. F. T. Peters, S. Schaefer, R. F. Staack, T. Kraemer, H. H. Maurer, Screening for and validated quantification of amphetamines and of amphetamine- and piperazine-derived designer drugs in human blood plasma by gas chromatography/mass spectrometry. J. Mass Spectrom. 2003, 38, 659-676.
5. J. T. Cody, S. Valtier, Differentiation of the 2,3-methylenedioxy regioisomer of 3,4-MDMA (ecstasy) by gas chromatography-mass spectrometry. J. Anal. Toxicol. 2002, 26, 537-539.
6. P. R. Stout, C. K. Horn, K. L. Klette, Rapid simultaneous determination of amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, 3,4-methyl- enedioxymethamphetamine, and 3,4-methylenedioxyethylamphetamine in urine by solid-phase extraction and GC-MS: a method optimized for high-volume laboratories. J. Anal. Toxicol. 2002, 26, 253-261.
7. W. Weinmann, M. Renz, S. Vogt, S. Pollak, Automated solid-phase extraction and two-step derivatization for simultaneous analysis of basic illicit drugs in serum by GC/MS. Int. J. Legal. Med. 2000, 113, 229-235.
8. P. Marquet, E. Lacassie, C. Battu, H. Faubert, G. Lachatre, Simultaneous determination of amphetamine and its analogs in human whole blood by gas chromatography-mass spectrometry. J. Chromatogr. B 1997, 700, 77-82.
9. J. T. Cody, R. Schwarzhoff, Fluorescence polarization immunoassay detection of amphetamine, methamphetamine, and illicit amphetamine analogues. J. Anal. Toxicol. 1993, 17, 26-30.
10. R. J. Renton, J. S. Cowie, M. C. Oon, A study of the precursors, intermediates and. reaction by-products in the synthesis of 3,4-methylenedioxymethyl- amphetamine and its application to forensic drug analysis. Forensic Sci. Int. 1993, 60, 189-202.
11. O. Beck, M. Kraft, M. R. Moeller, B. L. Smith, S. Schneider, R. Wennig, Frontline immunochromatographic device for on-site urine testing of amphetamines: laboratory validation using authentic specimens. Ann. Clin. Biochem. 2000, 37, 199-204.
12. K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida, T. Yoshida, Protein and polymer analyses up to m/z 100 000 by laser ionization time-of flight mass spectrometry. Rapid Commun. Mass Spectrom. 1988, 2, 151-153.
13. M. Karas, F. Hillenkamp, Laser desorption ionization of proteins with molecular masses exceeding 10,000 Daltons. Anal. Chem. 1988, 60, 2299-2301.
14. R. C. Beavis, B. T. Chait, Factors affecting the ultraviolet laser desorption of proteins. Rapid Commun. Mass Spectrom. 1989, 3, 233-237.
15. R. C. Beavis, B. T. Chait, High-accuracy molecular mass determination of proteins using matrix-assisted laser desorption mass spectrometry. Anal. Chem. 1990, 62, 1836-1840.
16. B. Spengler, M. Karas, U. Bahr, F. Hillenkamp, Excimer laser desorption mass spectrometry of biomolecules at 248. and 193 nm. J. Phys. Chem. 1987, 91, 6502-6506.
17. S. Zhao, V. S. Somayajula, A. G. Sharkey, D. M. Hercules, F. Hillenkamp,M. Karas, A. Ingendoh, Novel method for matrix-assisted laser mass spectrometry of proteins. Anal. Chem. 1991, 63, 450-453.
18. B. Stahl, M. Steup, M. Karas, F. Hillenkamp, Analysis of neutral oligosaccharides by matrix-assisted laser desorption ionization mass spectrometry. Anal. Chem. 1991, 63, 1463-1466.
19. B. Spengler, R. J. Cotter, Ultraviolet laser desorption/ionization mass spectrometry of proteins above 100,000 daltons by pulsed ion extraction time-of-flight analysis. Anal. Chem. 1990, 62, 793-796.
20. K. K. Mock, M. Davey, J. S. Cottrell, The analysis of underivatized oligosaccharides by matrix-assisted laser desorption mass spectrometry. Biochem. Biophys. Res. Commun. 1991, 177, 644-651.
21. Z. Guo, Q. Zhang, H. Zou, B. Guo, J. Ni, A method for the analysis of low-mass molecules by MALDI-TOF mass spectrometry. Anal. Chem. 2002, 74, 1637-1641.
22. J. E. Dally, J. Gorniak, R. Bowie, C. M. Bentzley, Quantitation of underivatized free amino acids in mammalian cell culture media using matrix assisted laser desorption ionization time-of-flight mass spectrometry. Anal. Chem. 2003, 75, 5046-5053.
23. J. Sunner, D. Edward, Y. C. Chen, Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions. Anal. Chem. 1995, 67, 4335-4342.
24. H. J. Kim, J. K. Lee, S. J. Park, H. W. Ro, D. Y. Yoo, D. Y. Yoon, Observation of low molecular weight poly(methylsilsesquioxane)s by graphite plate laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 2000, 72, 5673-5678.
25. T. T. Hoang, Y. Chen, S. W. May, R. F. Browner, Analysis of organoselenium compounds in human urine using active carbon and chemically modified silica sol-gel surface-assisted laser desorption/ionization high-resolution time-of-flight mass spectrometry. Anal. Chem. 2004, 76, 2062-2070.
26. I. P. Smirnov, X. Zhu, T. Taylor, Y. Huang, P. Ross, I. A. Papayanopoulos, S. A. Martin, D. J. Pappin, Suppression of -cyano-4-hydroxycinnamic acid matrix clusters and reduction of chemical noise in MALDI-TOF mass spectrometry. Anal. Chem. 2004, 76, 2958-2965.
27. L. H. Choen, A. I. Gusev, Small molecule analysis by MALDI mass spectrometry. Anal. Bioanal. Chem. 2002, 373, 571-586.
28. S. Bashir, R. Mutter, P. J. Derrick, Matrix-assisted laser desorption/ionization mass spectrometry with re-engineered 2,5-dihydroxybenzoic acid derivative. Analyst 2003, 128, 1452-1457.
29. A. I. Gusev, W. R. Wilkinson, A. Proctor, D. M. Hercules, Direct quantitative analysis of peptides using matrix assisted laser desorption ionization. Fresenius J. Anal. Chem. 1996, 354, 455-463.
30. H. Bartsch, W.A. König, M. Straβner, U. Hintze, Quantitative determination of native and methylated cyclodextrins by matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry. Carbohyd. Res.1996, 286, 41-53.
31. D. Mims, D. Hercules, Quantification of bile acids directly from urine by MALDI-TOF MS. Anal. Bioanal. Chem. 2003, 375, 609-616.
32. M. Zabet-Moghaddam, E. Heinzle, A. Tholey, Qualitative and quantitative analysis of low molecular weight compounds by ultraviolet matrix-assisted laser desorption/ionization mass spectrometry using ionic liquid matrices. Rapid Commun. Mass Spectrom. 2004, 18, 141-148.
33. R. Knochenmuss, A quantitative model of ultraviolet matrix-assisted laser desorption/ionization including analyte ion generation. Anal. Chem. 2003, 75, 2199-2207.
34. M. Cui, M. A. McCooeye, C. Fraser, Z. Mester, Quantitation of lysergic acid diethylamide in urine using atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry. Anal. Chem. 2004, 76, 7143-7148.