簡易檢索 / 詳目顯示

研究生: 郭泓男
Hung-Nan Kuo
論文名稱: 探討導入科學探究教學於科展培訓對學生科學探究能力之影響
Exploring the Effectiveness of Students’ Science Inquiry by Introducing Scientific Inquiry Teaching into Science Fair Training
指導教授: 許瑛玿
Hsu, Ying-Shao
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 97
中文關鍵詞: 科學探究科學展覽實作評量
英文關鍵詞: scientific Inquiry, science Fair, performance assessment
論文種類: 學術論文
相關次數: 點閱:614下載:42
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以美國奧勒岡州教育部門提出科學探究(Science Inquiry)四個面向、三層次評分準則形成的十二個科學探究能力分項(Oregon Department of Education, 2002)作為研究設計之科展培訓教學模組的主要參考依據,教學設計內容包含一學期16節的課程,課程教學目標涵蓋上述十二項科學探究能力分項。本研究採用混合方法設計研究法(mixed-methodology design),使用便利取樣,研究對象包含接受本研究設計之科展培訓教學模組並參與研究者任教學校校內科學展覽者11位學生,作為實驗組;另外選取沒有接受科展培訓教學模組但有參與校內科學展覽者11位學生,作為對照組。研究問題有二:(1)實驗組學生接受科展培訓教學模組前後,科學探究能力的改變及面對實驗誤差的控制與處理方式為何?(2)探討接受科展培訓教學模組學生與沒有接受科展培訓教學模組學生,在參與科展活動前後科學探究能力的改變及面對實驗誤差的控制與處理方式為何?研究採用一開放式真實操作的斜面滑車實驗作為診斷學生探究能力的科學探究能力實作評量,並藉由學生實驗日誌、實驗組科展活動追蹤紀錄、晤談等質性資料的分析來探討上述兩個研究問題。針對第一個研究問題,研究結果發現實驗組學生在科展培訓教學模組前後,在科學探究能力實作評量的「實驗設計」、「實驗操作」、「數據處理」、「分析詮釋」四個面向的得分皆達到顯著差異(p<0.05),且在總得分上達到高效果量(E.S.=2.27,p<0.05),並在實作評量子面向得分的分析與質性資料的對照,歸納出學生在科學探究能力實作評量操作過程中明顯進步的行為特徵包括:(1)正確地操弄操作變因;(2)操作變因的控制改變具有規律性;(3)刪除誤差過大的數據;(4)將實驗圖表做正確的詮釋。沒有明顯進步的行為特徵則包括:(1)圖表的紀錄與組織完整;(2)面對實驗結果與預期或理論差異做正確推論。而針對第二個研究問題,探討科學展覽活動對學生科學探究能力影響方面,實驗組與對照組的學生在科學探究能力實作評量表現皆有顯著進步 (實驗組E.S.=1.51,p<0.005;對照組E.S.=0.85,p<0.05),在實驗組與對照組科展作品評分的比較上,發現實驗組在「分析詮釋」的表現明顯優於對照組(p<0.05)。本研究針對質性資料進行內容分析,歸納出學生獲得實驗誤差相關概念來源、學生在面對科展實驗研究中誤差控制的處理策略、學生對於誤差在科學實驗造成影響的詮釋分別有哪些類型。研究者最後依據研究結論提出未來修改科展培訓相關教學模組設計與科學探究能力實作評量實施之具體建議。

    Based on the Scientific Inquiry Scoring Guide raised by the Oregon Department of Education (2002), this study developed a 16-hour course to help students complete science fair projects. The objective of the course is to help students to attain the 12 inquiry abilities from four aspects in the Scientific Inquiry Scoring Guide. Following a mixed-methodology approach and a convenience sampling strategy, this study recruited a total of 22 students who participated in the science fairs held in their school. Half of the students who received the instructional model were viewed as the experimental group, while the other half who participated in the science fairs merely was the control group. A total of two research questions would be discussed in this study. First, what changes did the students in the experimental group display on their abilities of inquiry as well as experimental error control after the course? Second, what changes did the experimental group and control group display on their abilities of inquiry as well as experimental error control after their participations of the science fairs? In the study, students were required to do actual experiments on sliding cars, in order to assess their scientific inquiry ability through a performance assessment. Another data collected during students' experiments included their experimental log, science fair activity records of the experimental group, and student interview data. Results showed that all the students from the experimental group had significant differences in four aspects of scientific inquiry ability, including experimental design, experimental operation, data processing, analyzing and interpreting, and the total scores (E.S.=2.27,p<0.05). By comparing the scores they gained from performance assessments and other qualitative data, impressive improvements were observed from students' performances during experiments, such as manipulating independent variables correctly, displaying the abilities of variable control and alteration regularly, identifying and deleting data errors, and making correct interpretation of graphs. For the second research question regarding between-group inquiry performance after science fairs, both of the experimental group and the control group showed significant improvements on the scores of their inquiry performance assessments (experimental group E.S.=1.51,p<0.005;control group E.S.=0.85,p<0.05). While comparing the scores of science fair projects, the experimental group had significantly higher scores than the control group did in the part of “analyzing and interpreting” (p<0.05). According to the qualitative data, this study identified the sources of students' concepts regarding experimental errors, the strategies that the students used to control errors which might occur during the experiments, and the types of students' interpretation on experimental errors. At last, based on the results of the study, school teachers can consider to applying the teaching model proposed in this study to train students how to accomplish their science fair and evaluating students' inquiry abilities through performance assessments.

    第一章 緒論 1 第一節 研究動機與背景 1 第二節 研究重要性 3 第三節 研究問題 4 第四節 名詞釋義 5 第二章 文獻探討 7 第一節 科學探究 7 第二節 科學探究教學設計 10 第三節 科學展覽對學生科學探究的影響 15 第三章 研究方法 20 第一節 研究對象 20 第二節 研究流程 23 第三節 科展培訓教學模組設計 25 第四節 研究工具 29 第五節 資料分析方法 35 第六節 研究範圍與限制 37 第四章 結果與討論 38 第一節 科展培訓教學模組對學生科學探究能力發展的影響 38 第二節 科學展覽活動對學生科學探究能力發展的影響 47 第三節 學生對於實驗誤差概念形成機制之探討 58 第五章 結論與建議 68 第一節 研究發現與結論 68 第二節 綜合討論 70 第三節 建議 72 參考文獻 76 附錄 83 附錄一 數據分析活動教案與學習單 83 附錄二 科學探究能力實作評量 87 附錄三 學生科展專題研究實驗誤差控制分析 95 附錄四 科展作品評分準則 96 附錄五 科展成果依科學探究面相評分 97

    一、中文部分
    丁亞雯(2012)。以 「課程與教學」為十二年國教推動核心─ 臺北市推動的策略與行動。中等教育,63(1),183-187。
    王保進(2006)。中文視窗版SPSS與行為科學研究。臺北市:心理出版社。
    王晶瑩(2008)。科學本質觀與科學探究的意義及實踐:美國Norman g. Lederman教授訪談錄。全國教育展望,37(2),3-6。
    江良捷(2010)。資深科學展覽指導教師如何指導學生做科展。國立臺北教育大學自然科學教育學系碩士論文,未出版,臺北市。
    李中一(2004)。測量工量的效度與信度。臺灣公共衛生雜誌,23(4),272-281。
    李明昆、洪振方(2011)。九年級學生探究性科學問題提問與問題發展型態之個案研究。科學教育研究與發展季刊,61,51-80。
    宋雅鈴(2009)。應用歷程分析於生物科學探究評量之研究。國立交通大學理學院網路學習學程碩士論文,未出版,新竹市。
    余尚芸(2003)。國二學生實施「專題導向式合作解題活動」之歷程分析。國立高雄師範大學數學系碩士論文,未出版,高雄市。
    林建志(2008)。運用不同教學策略於不同回饋之實驗模擬對國中學生實驗技能與實驗態度的影響。臺灣師範大學資訊教育學系學位論文,未出版,臺北市。
    邱韻如(2002)。以認知衝突的教學策略營造問答互動的討論情境: 大一普物「單擺實驗」的教學實務探討。第十八屆科學教育學術研討會。彰化市:國立彰化師範大學。
    洪振方(2010)。思考導向的探究式學習對國二學生科學探究能力的影響。科學教育學刊,18(5),389-415。
    徐佳璋(2007)。臺灣中小學科展活動之實務探究。科學教育,297,2-15。
    徐國士(2001)。中華民國國中小科學展覽會實施要點。臺北市,國立台灣科學教育館。
    高慧蓮(2005)。九年一貫課程「自然與生活科技領域」科學探究能力之培養研究-科學探究能力之評量(Ⅱ)( NSC 94-2511-S-153-00)。臺北市:行政院國家科學委員會。
    高慧蓮(2006)。九年一貫課程「自然與生活科技領域」科學探究能力之培養研究-子計畫二: 科學探究能力之評量(Ш)(NSC 95-2511-S-153-006)。臺北市:行政院國家科學委員會。
    許瑛玿(2008)。探討數位學習環境中學生科學探究歷程和學習策略-總計畫(97-2511-S-003-022-MY3)。臺北市:行政院國家科學委員會。
    張可彤(2008)。科學展覽表現優良教師指導科展歷程之個案研究。國立臺北教育大學自然科學教育學系碩士論文,未出版,臺北市。
    張容君、張惠博(2007)。國中學生「燃燒」概念診斷之研究。科學教育學刊,15(6), 671-701.
    教育部(2003)。國民中小學九年一貫課程綱要:自然與生活科技學習領域。臺北市:教育部。
    曹淇峰、廖家榮、林志弘、邱美嬌、譚利亞、蔡蘊明(2009)。探索式化學實驗課程之開發。第25屆中華民國科學教育學術研討會。彰化,台灣。
    莊創期(2003)。國二生手與專家學生在科學探究過程的差異分析。國立高雄師範大學科學教育研究所碩士論文,未出版,高雄市。
    陳文典(2002)。自然與生活科技學習領域生活化課程設計。臺北市:康軒。
    陳名賢(2005)。澎湖地區國民小學自然與生活科技教師教學困擾之研究。國立臺南大學 教育經營與管理研究所碩士論文,未出版,台南。
    陳均伊(2010)。教師專業成長之個案研究:一位國中自然教師探究教學觀點的轉變。教育科學研究期刊,55(2),223-264。
    陳振明(2003)。影響高一學生科學創造力的因素之研究。國立高雄師範大學特殊教育所博士論文,未出版,高雄市。
    彭天音(2010)。探討氣象探究網路競賽中學生科學探究能力的表現。國立臺灣師範大學科學教育研究所碩士論文,未出版,臺北市。
    黃茂在、陳文典(2000)。由教學模組看-「自然與生活科技」學習領域之教學。九年一貫課程的教與學,75-84。
    黃福坤(2004年8月)。實驗數據的處理與分析。檢自http://www.phy.ntnu.edu.tw/demolab/html.php?html=Notes/dataProcess
    楊進忠(2004)。以融入動態評量的實作教學策略探究國小六年級學童「電磁作用」概念之概念學習。國立臺北教育大學自然科學教育研究所碩士論文,未出版,臺北市。
    葉世榮、曾正宜 (2003)。分析生物科學展覽得獎作品以研發創意教學法(NSC92-2520-S-007-002)。專題硏究計畫成果報告。臺北市:行政院國家科學委員會。
    劉俊庚、邱美虹(2012)。我國百年國中科學課程發展回顧與展望。科學教育,347, 2-20。
    樊琳、李賢哲(2002)。以 「專題研究」培養國小職前教師科學探究過程與教材開發能力之研究。師大學報,47(2),105-12。
    蔡執仲、段曉林(2005)。探究式實驗教學對國二學生理化學習動機之影響。科學教育學刊,13(3),289-315。
    蔡執仲、段曉林、靳知勤(2009)。巢狀探究教學對國二學生覺知教師溝通行為改變之探討。課程與教學,12(3),129-152。
    鄭英耀、王文中(2002)。影響科學競賽績優教師創意行為之因素。應用心理研究,15,163-189。
    鄭英耀、李育嘉、劉昆夏(2008)。科展績優教師教學行為與學童創造力,問題解決能力之關係。教育與心理研究,31(1),1-30。
    鄭豐順(1996)。國中學生燃燒概念之診斷與探討。國立師範大學化學系碩士論文,未出版,臺北市。
    魯俊賢、吳毓瑩(2007)。過程技能之二階段實作評量:規劃,實踐與效益探究。科學教育學刊,15(2),215-239。
    盧雪梅(1998)。實作評量的應許,難題和挑戰。檢自http://www.nmh.gov. tw/edu/basis3/20/jk2. htm.
    謝州恩、吳心楷(2005)。探究情境中國小學童科學解釋能力成長之研究。師大學報,50(2),55-84。
    鍾一華(2012)。支援國小科展探究教與學之網路科展探究系統的開發與評估。國立中央大學網路學習科技研究所碩士論文,未出版,桃園。
    顏瓊芬、黃世傑(2003)。學生在開放式科學探究過程中互動模式之研究。科學教育學刊,11(2),141-169。
    嚴婉尹(2008)。國中生科展經驗對其科學探究技能與歷程覺知之影響。國立臺灣海洋大學教育研究所碩士論文,未出版,基隆。
    二、西文部分
    Akinoglu, O. (2008). Assessment of the inquiry-based project implementation process in science education upon students’points of views. International Journal of Instruction, 1(1), 1-12.
    Bevington, P. R. (1994). Data reduction and error analysis for the physical sciences, New York:McGraw-Hill.
    Chang, C. Y., Hagmann, J. G., Chien, Y. T.,& Cho, C. W. (2012). Leveraging educational pathway to bridge in-school and out-of-school science learning: A comparison of different instructional designs. Journal of Baltic Science Education, 11(3), 275-284
    Chen, Sufen. (2010). The view of scientific inquiry conveyed by simulation-based virtual laboratories. Computers & education, 55(3), 1123-1130
    Colburn, A. (2000). An inquiry primer. Science Scope, 23(6), 42-44.
    Gess-Newsome, J. (2002). The use and impact of explicit instruction about the nature of science and science inquiry in an elementary science methods course. Science & Education, 11(1), 55-67.
    Gibson, H. L., & Chase, C. (2002). Longitudinal impact of an inquiry‐based science program on middle school students' attitudes toward science. Science education, 86(5), 693-705.
    Gomez, K. (2007). Negotiating discourses: Sixth-grade students’ use of multiple science discourses during a science fair presentation. Linguistics and Education, 18(1), 41-64.
    Harmon, M., Smith, T. A., Martin, M. O., Kelly, D. L., Beaton, A. E., Mullis, I. V. S., Orpwood, G. (1997). Performance assessment in iea's third international mathematics and science study (timss): TIMSS International Study Center.
    Jaw, W. C. (2006). The effects of integrating learning cycle as strategy on Digital-Learning Content. Unpublished master thesis, National University of Tainan, Tinan.
    Keys, C. W., & Bryan, L. A. (2001). Co‐constructing inquiry‐based science with teachers: Essential research for lasting reform. Journal of Research in Science Teaching, 38(6), 631-645.
    Klahr, D., & Nigam, M. (2004). The equivalence of learning paths in early science instruction effects of direct instruction and discovery learning. Psychological Science, 15(10), 661-667.
    Korsunsky, B. (2010). “The errors were the results of errors”: Promoting good writing by bad example. The Physics Teacher, 48, 10.
    Kyriazi, E., & Constantinou, C. (2004). The science fair as a means for developing investigative skills in elementary school. Paper presented at the Proceedings of the 1st International Conference on Hands on Science.
    Lawson, A. E. (1988). A better way to teach biology. American Biology Teacher. 50(5), 266-289.
    Limniou, M., Papadopoulos, N., & Whitehead, C. (2009). Integration of simulation into pre-laboratory chemical course: computer cluster versus WebCT. Computers &Education, 52(1), 45–52.
    Masson, S., & Legendre, M. F. (2008). Effects of using historical microworlds on conceptual change: A p-prim analysis. International Journal of Environmental and Science Education, 3(3), 115-130.
    Menditto, A., Patriarca, M., & Magnusson, B. (2007). Understanding the meaning of accuracy, trueness and precision. Accreditation and Quality Assurance: Journal for Quality, Comparability and Reliability in Chemical Measurement, 12(1), 45-47.
    McComas, W. F. (2011). The science fair: A new look at an old tradition. Science Teacher, 78(8), 34-38.
    National Research Council. (1996). National science education standards: National Academy Press Washington, DC.
    National Research Council. (2000).The national science education standards: Washington, DC: National Academies Press.
    Oregon Department of Education: Scientific Inquiry Test Scoring Guide.
    http://science.www.gresham.k12.or.us/modules/groups/homepagefiles/gwp/1597670/1903222/File/Sc_Inq_Sc_Gde_HS_Eng.pdf
    Siegel, P. (2007). Having fun with error analysis. Physics Teacher, 45(4), 232.
    Rillero, P. (2011). A standards-based science fair. Science and Children, 48(8), 32-36.
    Schwartz, R. S., Lederman, N. G., & Crawford, B. A. (2004). Developing views of nature of science in an authentic context: An explicit approach to bridging the gap between nature of science and scientific inquiry. Science education, 88(4), 610-645.
    Schwab, J. J., & Brandwein, P. F. (1962). The teaching of science as enquiry. The teaching of science, 3-103.
    Science, C. f., Mathematics, & Inquiry, E. E. C. o. D. o. a. A. t. t. N. S. E. S. o. S. (2000). Inquiry and the national science education standards: A guide for teaching and learning: National Academies Press.
    Standards, N. R. C. N. C. o. S. E., & Assessment. (1993). National science education standards: National Academies.
    Tłaczała, W., Gorghiu, G., Glava, A., Bazan, P., Kukkonen, J., Mąsior, W., Zaremba, M. (2006). Computer simulation and modeling in virtual physics experiments. Paper presented at the Proceedings of IV International Conference on Multimedia and Information & Communication Technologies in Education. November.
    Trowbridge, L. S. & Wbyee, R. W. (1986). Becoming a Secondary School Science Teacher.New York: Merrill Press.
    Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model‐based inquiry as a new paradigm of preference for school science investigations. Science education, 92(5), 941-967.

    下載圖示
    QR CODE