簡易檢索 / 詳目顯示

研究生: 古玉鳳
論文名稱: 利用exo-glycals立體選擇性合成具有限制構形之apha-半乳醣神經醯胺的類似物
Stereoselective synthesis of conformational constrained apha-galactosylceramide analogues from exo-glycals
指導教授: 陳焜銘
Chen, Kwun-Min
林俊宏
Lin, Chun-Hung
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2005
畢業學年度: 93
語文別: 中文
中文關鍵詞: apha-半乳醣神經醯胺限制構形
英文關鍵詞: exo-glycals, apha-galactosylceramide
論文種類: 學術論文
相關次數: 點閱:102下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • CD1分子是一群在結構與功能上近似MHC(Major Histocompatibility complex,主要組織相容複合體)的醣蛋白,藉由呈現疏水性的抗原分子(例如醣脂質)讓T細胞辨識而活化T細胞,進而引發一連串的免疫反應。人類的CD1d分子以及老鼠的同源體皆可呈現一種特別的醣脂質apha-galactosylceramide(apha-GalCer)給免疫系統中的自然殺手T細胞(natural killer T cell,簡稱NKT 細胞)辨識。研究顯示,許多自體免疫性疾病和由apha-GalCer活化之自然殺手T細胞有相關性,例如:多發性硬化症、自體免疫性糖尿病、以及器官移植之排斥、血管硬化等等。因此apha-GalCer以及其類似物可以具有免疫調節的能力。
    過去關於使用apha-GalCer 活化自然殺手T細胞的研究中,已指出有關apha-GalCer結構與活性關聯的重要特徵,包括:(1)連接醣類與脂質的醣鍵位向(apha-glycosidic linkage);(2)醣類環上二號位置的羥基;(3)phytosphingosine上的第三、第四兩個羥基等,都是決定apha-GalCer是否具有活性的必要條件。而抗原結構的改變可能導致抗原活性的增減,也可能影響NKT細胞活化後釋放的細胞激素種類。本論文之研究目標為合成具限制構形的apha-GalCer類似物;在合成方面我們以exo-glycals進行加成反應,可得到C或O-linked的glycosylation 產物,隨後再利用臭氧裂解,還原性胺化/環化反應,建立擁有目標物主要骨架的中間產物。雖然在部分氧化及去保護的步驟遇到困難,本論文仍提供合成限制構型的apha-GalCer類似物的合成基礎。此外本論文也利用NMR方法確定新生光學中心的立體組態,合成產物最後使用酵素結合免疫吸附法(ELISA)加以評估其免疫活性。

    CD1 molecules are the family of MHC-like cell surface glycoproteins presenting glycolipid antigens to lymphocytes. They recognize and bind glycolipid antigens through lipid-protein interactions and hand over the sugar moiety of the antigen to the receptor on natural killer T (NKT) cells to activate the immune system. Human CD1d and its mouse homolog are shown to provide natural kill T cells with a special glycolipid, CD1 molecules are the family of MHC-like cell surface glycoproteins presenting glycolipid antigens to lymphocytes. They recognize and bind glycolipid antigens through lipid-protein interactions and hand over the sugar moiety of the antigen to the receptor on natural killer T (NKT) cells to activate the immune system. Human CD1d and its mouse homolog are shown to provide natural kill T cells with a special glycolipid,apha-galactosylceramide (apha-GalGer),apha-GlaCer-activated NKT cells have been reported to play crucial roles in a variety of autoimmune pathologies, including multiple sclerosis, autoimmune diabetes, organ transplant repulsion and atherosclerosis.
    The necessary structural features of apha-GalCer have been identified necessary for antigen recognition by CD1-restricted NKT cells, such as (1) the anomeric glycosidic linkage between sugar and lipid moieties; (2) the 2-hydroxyl group on the pyranose ring; (3) the presence of 3’ and 4’-hydoxyl groups on the phytosphingosine chain. Change of the antigen structure may alter the level of stimulatory activity and switch the cytokine pattern released by NKT cells. A series of conformationally constrained C- or O-linked apha-GalCer analogues were designed and synthesized. The main skeleton was constructed by stereoselective addition of exo-glyclas and subsequent ozonolysis, reductive amination, cyclization. The new stereogenic center of these intermediates and products was determined by special NMR methods. In addition, the ELISA method was used to evaluate the immuno-activity of these synthesized molecules.apha-galactosylceramide (apha-GalGer), apha-GlaCer-activated NKT cells have been reported to play crucial roles in a variety of autoimmune pathologies, including multiple sclerosis, autoimmune diabetes, organ transplant repulsion and atherosclerosis.
    The necessary structural features of apha-GalCer have been identified necessary for antigen recognition by CD1-restricted NKT cells, such as (1) the anomeric glycosidic linkage between sugar and lipid moieties; (2) the 2-hydroxyl group on the pyranose ring; (3) the presence of 3’ and 4’-hydoxyl groups on the phytosphingosine chain. Change of the antigen structure may alter the level of stimulatory activity and switch the cytokine pattern released by NKT cells. A series of conformationally constrained C- or O-linked apha-GalCer analogues were designed and synthesized. The main skeleton was constructed by stereoselective addition of exo-glyclas and subsequent ozonolysis, reductive amination, cyclization. The new stereogenic center of these intermediates and products was determined by special NMR methods. In addition, the ELISA method was used to evaluate the immuno-activity of these synthesized molecules.

    中文摘要…….……………………………………………………………I 英文摘要…….…………..…………………………………………...II 縮寫表…….…………...…………………………………………….III 第一章 緒論……………………………………………1 1.1Galactosylceramide………………………………………........2 1.2含有限制構型的類似物…………………………………….....…11 1.3Glycosylation of exo glycals………………………….……..14 1.4標的分子的合成設計以及逆合成分析…………………….…..…17 第二章 結果與討論…………………………………………….....…21 2.1以exo-glycals進行醣化反應組成主要架構…………………....21 2-1-1.exo-glycal之O-醣化反應…………………………….….……22 2-1-2.exo-glycal之C-醣化反應…………………………….…….…25 2.2中間產物(I & II)的合成及其結構分析……………………..….28 2.2-1中間產物 I:(9-benzyl-3, 4, 5-tris-benzyloxy-2-benzyloxy methyl-1-oxa-9-aza-spiro[5.5]undec-8-yl)-methanol…………..28 2.2-2中間產物 II:(11-benzyl-3,4,5-tris-benzyloxy-2-benzyloxy methyl-1,7-dioxa-10-aza-spiro[5.5]undec-9-yl)-methano…...32 2.3以氧化、去保護及其他衍生法合成可進行生物活性評估之最終產物…37 2.3-1 合成部分……..………………………………….……………37 2.3-2 apha-GalCer生物活性之測量方法………………………..…37 2.4結論……………….......………………………..………..……42 第三章 實驗部分………………………………..………………….…47 3.1試劑和實驗儀器……………………….…………...………….…47 3.2實驗步驟及光譜數據……………..................……….…49 第四章 參考文獻及資料……………….…………..……………..…77 附錄…………………………………………….………………...……87

    1.Lindhorst, T. K. Essentials of Carbohydrate Chemistry and Biochemistry, 1st ed.; Wiley-Vch; Welnheim. 1999; pp 3-31
    2.Essentials of Glycobiology; Varki, A.; Cummings, R., Esko, J.; Freeze, H., Hart, G.; Marth, J.; Eds.; Cold Spring Harbor: New York. 1999; pp 1-57.
    3.(a) Itzkowitz, S. H.; Yuan, M.; Montgomery, C. K.; Kjeldsen, T., Takahashi, H. K.; Bigbee, W. L. Cancer Res. 1989, 49, 197. (b) Itzkowitz, S. H.; Bloom, E. J.; Kokal, W. A.; Modin, G.; Hakomori, S., Kim, Y. S. Cancer 1990, 1960. (c) Werther, J. L. Tatematsu; M., Klein, R.; Kurihara, M.; Kumagai, K.; Llorens, P.; Neto, J. G.; Bodian, C.; Pertsemlidis, D.; Yamachika, T.; Kitou, T. Int. J. Cancer 1996, 69, 193. (d) Miyajima, K.; Nekado, T.; Ikeda, K.; Achiwa, K. Chem. Pharm. Bull. 1998, 46, 11, 1676. (e) Miyajima, K.; Nekado, T.; Ikeda, K.; Achiwa, K. Chem.Pharm. Bull. Jpn. 1997, 45, 9, 1544. (f) Danishefsky, S. J.; Bilodeau, M. T. Angew. Chem. Int. Ed. Engl. 1996, 35, 1380. (b) Seeberger, P. H.; Danishefsky, S. J. Acc. Chem. Res. 1998, 31, 685.
    4.(a) Kornfeld, R.; Kornfeld, S.; Annu. Rev. Biochem. 1985, 54, 631. (b) Rademacher, T. W.; Parekh, R. B.; Dwek, R., A. Annu. Rev. Biochem. 1988, 57, 785. (c) Varki, A. Glycobiology. 1993, 3, 97. (d) Dwek, R. A. Chem. Rev. 1996, 96, 683. (e) B. Imperiali; S. E. O’Connor. Curr. Opin. Chem. Biol. 1999, 3, 643. (f) O. Schuster; G. Klich; V. Sinnwell; H. Kranz; H. Paulsen; B. Meyer. J. Biomol. NMR, 1999, 14, 33. (g) L. Kirnarsky; O. Prakash; S. M. Vogen; M. Nomoto; M. A. Hollingsworth and S. Sherman. Biochemistry, 2000, 39, 12076. (h) F. G. Hanisch; S. Muller; H. Hassan; H. Clausen; N. Zachara; A. A. Gooley; H. Paulsen; K. Alving; J. Peter-Katalinic. J. Biol. Chem., 1999, 274, 9946. (i) K. M. Koeller; C.-H. Wong. Nature Biotechnol., 2000, 18, 835.
    5.(a) Joyce, S.; Kaer, L. V.; Curr. Opin. Immunol. 2003, 15, 95. (b) Calabi, F.; Jarvis, J. M.; Martin, L.; Milstein, C. Eur. J. Immunol. 1989, 19, 285.
    6.Porcelli, S., A.; Modlin, R. L. Annu. Rev. Immunol. 1999, 17, 297.
    7.Zeng, Z.; Castano, A. R.; Segelke, B. W.; Stura, E. A.; Peterson, P. A.; Wilson. I. A. Science, 1997, 277, 339.
    8.(a) Singh, N.; Hong, S.; Scherer, D. C.; Serizawa, I.; Burdin, N.; Kronenberg, M.; Koezuka, Y., Van Kaer, L. J. Immunol., 1999, 163, 2373–2377. (b) Hong, S.; Wilson, M. T.; Serizawa, I.; Wu, L., Singh, N.; Naidenko, O. V.; Miura, T.; Haba, T.; Scherer, D. C.; Wei, J. Nat. Med., 2002, 7, 1052. (c) Burdin, N.; Brossay, L.; Kronenberg, M. Eur. J. Immunol., 1999, 29, 2014. (d) Gapin, M. K. L. Nat. Rev. Immunol., 2002, 8, 557. (e) Brossay, L.; Chioda, M.; Burdin, N.; Koezuka, Y.; Casorati, G.; Dellabona, P.; Kronenberg, M. J. Exp. Med., 1998, 188, 1521.
    9.(a) Morita, M.; Motoki, K.; Akimoto, K.; Natori, T.; Sakai, T.; Sawa, E.; Yamaji, K.; Koezuka, Y.; Kobayashi, E.; Fukushima, H. J. Med. Chem., 1995, 38, 2176. (b) Natori, T.; Morita, M.; Akimoto, K.; Koezuka, Y.; Agelasphins, Y. Tetrahedron, 1994, 50, 2771. (c) V. Costantino; E. Fattorusso; C. Imperatore; A. Mangoni. J. Org. Chem., 2004, 69, 1174.
    10.Z. Illes; T. Kondo; J. Newcombe; N. Oka; T. Tabira; T. Yamamura. J. Immunol., 2000, 164, 4375.
    11.(a) S. Sharif; G. A. Arreaza; P. Zucker; Q. S. Mi; J. Sondhi; O. V. Naidenko; M. Kronenberg; Y. Koezuka; T. L. Delovitch; J. M. Gombert; M. Leite-de-Morales; C. Gouarin; R. Zhu; A. Hameg; T. Nakayama; M. Taniguchi; F.; Lepault, A.; Lehuen, J. F. Bach,; A. Herbelin. Nat. Med. 2001, 1057; (b) Y. N. Naumov; K. S. Bahjat; S. B. Wilson. Proc. Nat. Acad. Sci. USA., 2001, 98, 13838.
    12.K. Seino, K.; Fukao, K.; Muramoto, K.; Yanagisawa, Y.; Takada, S.; Kakuta, Y.; Iwakura, L.; Van Kaer, K.; Takeda, T.; Nakayama, M. Taniguchi, H.; Bashuda, H.; Yagita, K.; Okumura. Proc. Natl. Acad. Sci. USA., 2001, 98, 2577.
    13.M. A. Ostos; D. Recalde; M. M. Zakin; D. Scott-Algara. FEBS Lett., 2002, 519, 23.
    14.M. Morita; K. Motoki; K. Akimoto; T. Natori; T. Sakai; E. Sawa; K. Yamaji; Y. Koezuka; E. Kobayashi; H. Kukushima. J. Med. Chem. , 1995, 38, 2176.
    15.(a) X.-T. Zhou; C. Forestier; R. D. Goff; C. Li; L. Teyton; A. Bendelac; P. B. Savage. Org. Lett., 2002, 4, 1267. (b) T. Sakai; O. V. Naidenko; H. Iijima; M. Kronenberg; Y. Koezuka. J. Med.Chem., 1999, 42, 1836. (c) O. V. Naidenko; J. K. Maher; W. A. Ernst; T. Sakai; R. L. Modlin; M. Kronenberg. J. Exp. Med.; 1999, 190, 1069.
    16.Motoki, K.; Morita, M.; Kobayashi, E.; Uchida, T.; Akimoto, K.; Fukushima, H.; Koezuka, Y. Biol. Pharm Bull. 1995, 18, 1487.
    17.Motorki, M.; Motoki, K.; Akimoto, K.; Natori, T.; Sakai, E.; Yamaji, K.; Koezuka, Y.; Kobayashi, E.; Fukushima, H. J.Med. Chem. 1995, 38, 2176.
    18.Motoki, K.; Kobayashi, E.; Uchida, T.; Fukushima, H.; Koezuka, Y. Bioorg. Med. Chem. Lett. 1995, 5, 705.
    19.Kobayashi, E.; Motoki, K.; Yamaguchi, Y.; Uchida, T.; Fukushima, H.; Koezuka, Y. Bioorg. Med. Chem. 1996, 4, 615.
    20.Uchimura, A.; Shimizu, T.; Nakajima, M.; Ueno, H.; Motoki, K.; Fukushima, H.; Natori, T.; Koezuka, Y. Bioorg. Med. Chem. 1997, 5, 1447.
    21.Uchimura, A.; Shimizu, T.; Morita, M.; Ueno, H.; Motoki, K.; Fukushima, H.; Natori, T.; Koezuka, Y. Bioorg. Med. Chem., 1997, 5, 2245.
    22.Sakai, T.; Ueno, H.; Natori, T.; Uchimura, A.; Motoki, K.; Koezuka, Y. J. Med. Chem. 1998, 41, 650.
    23.Iijima, H.; Kimura, K.; Sakai, T.; Uchimura, A.; Shimizu, T.; Ueno, H.; Natori, T.; Koezuka, Y. Bioorg. Med. Chem. 1998, 6, 1905.
    24.Kawano, T.; Cui, J.; Koezuka, Y.; Toura, I.; Kaneko, Y.; Motoki, K.; Ueno, H.; Nakagawa, R.; Sato, H.; Konodo, E.; Koseki, H.; Taniguchi, M. Science 1997, 278, 1626.
    25.Brossay, L.; Naidenko, O.; Burdin, N.; Matsuda, J.; Sakai, T.; Kronenberg, M. J. Immunol. 1998, 161, 5124.
    26.Spada, F. M.; Koezuka, Y.; Porcelli, S. A. J. Exp. Med. 1998, 188, 1529.
    27.Sakai, T.; Naidenko, O. V.; Iijima, H.; Kronenberg, M.; Koezuka, Y. J. Med. Chem. 1999, 42, 1836.
    28.Prigozy, T. I.; Naidenko, O. V.; Qasba, P.; Elewaut, D.; Brossay, L.; Khurana, A.; Natori, Y.; Koezuka, Y.; Kulkarni, A.; Kronenberg, M. Science 2001, 291, 664.
    29.Miyamoto, K., Miyake, S., Yamamura. T. Nature 2001, 413, 531.
    30.Zhou, X. T.; Forestier, C.; Goff, R. D.; Li, C.; Teyton, L.; Bendelac, A.; Savage, P. B. Org. Lett. 2002, 4, 1267.
    31.Du, W. J.; Jacquelyn G. H. Org. Lett. 2005, 7, 2063.
    32.Oliver Plettenburg.; Vera B.N.; Wong, C.H. J. Org. Chem. 2002, 67, 4559.
    33.Fan, G. T.; Pan, Y. S.; Lu, K. C.; Cheng, Y.P.; Lin, W.C.; Lin Steven; Lin, C. H.; Wong, C. H.; Fan, J. M.; Lin, C.C. Tetrahedron., 2005. 61. 1855.
    34.Alessandro Dondoni; Daniela Perrone; Elisa Turturici, J. Org. Chem. 1999, 64, 5557.
    35.Guangli Yang; John Schmieg; Moriya Tsuji; Richard W. Franck. Angew. Chem. Int. Ed. 2004, 43, 3818.
    36.Guangwu Chen; John Schmieg; Moriya Tsuji; Richard W. Franck. Org. Lett., 2004, 6, 4077.
    37.(a) Hruby, V. J.; Bonner, G. G. In Methods in Molecular Biology.; Pennigton, M. W.; Dunn, B. M. Eds. Humana Press: Totowa, NJ, 1994, 35, 201. (b) Obrecht, D.; Altorfer, M.; Robinson, J. A. Adv. Med. Chem., 1999, 4, 1. (c) Goodman, M.; Shao, H. Pure Appl. Chem., 1996, 68, 1303.
    38.(a) Kirnarsky, L.; Prakash, O.; Vogen, S. M.; Nomoto, M.; Hollingsworth, M. A. Sherman, S. Biochemistry 2000, 39, 12076. (b) Wu, W.; Pasternack, L.; Huang, D.-H.; Koeller, K. M.; Lin, C.-C.; Seitz, O.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 2409. (c) O’Connor, S. E.; Imperiali, B. Chem. Biol. 1998, 5, 427. (d) Liang, R.; Andreotti, H.; Kahne, D. J. Am. Chem. Soc. 1995, 117, 10395. (e) Meyer, B. Top. Curr. Chem. 1990, 154, 141. (f) Davis, B. G. J. Chem. Soc., Perkin Trans. 1., 2000, 2137. (g) Navarre, N.; vanOijen, A. H.; Boons, G. J. Tetrahedron Lett. 1997, 38, 2023. (h) Geyer, A.; Muller, M.; Schmidt, R. R. J. Am. Chem. Soc. 1999, 121, 6312. (i) Alibes, R.; Bundle, D. R. J. Org. Chem. 1998, 63, 6288.
    39.(a) Koviach J. L.; Chappell M. D.; Halcomb R. L. J. Org. Chem. 2001, 66, 2318. (b) Homans, S. W. Biochemistry 1990, 29, 9110. (c) Weiner, S. J.; Kollman, P. A.; Case, D. A.; Singh, U. C.; Ghio, C.; Alagona, G.; Profeta, S.; Weiner, P. J. Am. Chem. Soc. 1984, 106, 765. (d) Weiner, S. J.; Kollman, P. A.; Nguyen, D. T.; Case, D. A. J. Comput. Chem. 1986, 7, 230.
    40.Xiaoliu Li; Hideyo Takahashi; Hiro Ohtake; Shiro Ikegami. Hetercycles, 2003, 59, 547.
    41.Jonathan W; Lane; Halcomb R. L. J. Org. Chem. 2003, 68, 1348.
    42.(a) Lakhrissi, M., Chapleur. Y. Angew. Chem. Int. Engl. 1996, 35, 7, 750. (b) lieberknecht, A.; Griesser, H.; Bravo, R. D.; Colinas, P. A.; Grigera, R. J. Tetrahedron., 1998, 54, 3159. (c) Xie, J.; Molina, A.; Czernecki, S. J. Carbohydrate Chem, 1999, 18, 481. (d) Molina, A.; Czernecki, S.; J. Xie. Tetrahedron Lett. 1998, 39, 7507.
    43.(a) RajanBabu, T. V.; Reddy, G. S. J. Org. Chem. 1986, 51, 5458. (b) White, A.; Rose; D. R. Curr. Opin. Struc. Biol. 1997, 7, 645.
    44.Lichtenthaler, F. W.; Hahn, S.; Flath, F. J. Liebigs. Ann. 1995, 2081.
    45.(a) Belica, P. S.; Franck, R. W. Tetrahedron Lett. 1998, 39, 8225. (b) Griffin, F. K.; Paterson, D. E.; Taylor, R. J. K. Angew. Chem. Int. Engl. 1999, 38, 19, 2939.
    46.Yang, W. B.; Yang, Y. Y.; Gu, Y.F.; Wang, S. H.; Chang C. C.; Lin, C. H. J. Org. Chem. 2002, 67, 3773.
    47.Alessandra Bartolozzi; Giuseppe Capozzi; Chiara Falciani; Stefano Menichetti; Cristina Nativi; Alessia Paolacci Bacialli. J. Org. Chem. 1999, 64, 6490.
    48.M. El Sous; Mark A. Rizzacasa. Tetrahedron Letter, 2000, 41 8591.
    49.(a) Yang, W. B.; Chang, C. F.; Wang, S. H.; Teo, C.F.; Lin, C. H. Tetrahedron Letter, 2001, 42 4657. (b) Chang, C. F.; Yang, W. B.; Chang, C. C.; Lin, C. H. Tetrahedron Letter., 2002, 43, 6515.
    50.Lin, H. C.; Yang, W. B.; Gu, Y. F.; Chen, C. Y.; Chen, C. Y.; Lin, C. H. Org. Lett, 2003, 5, 1087.
    51.Lin, H. C.; Du, W. P.; Chang, C. C.; Lin, C. H.; Tetrahedron Lett, accpeted.
    52.William H. Pearson; pf Stephen C. Bergmeier; Samir Degan; KO-Chung Lin; Yam-Foo Poon; Jeffrey M. Schkeryantz; John P. Williams. J. Org. Chem. 1990, 55, 5719.
    53.Stephen F. Martin; John A. Josey; Wong, Y.L.; Daniel W. Dean. J. Org. Chem. 1994, 59, 4805.
    54.林煇章,國立交通大學 博士論文 民國八十九年。
    55.Jose´ Barluenga; Beatriz Baragan˜a; Jose’M. Concello’n. J. Org. Chem. 1999, 64, 2843.
    56.William D. Lubell; Timothy F. Jamison; Henry Rapoport. J. Org. Chem. 1990, 55, 3511.
    57.Sakai, T.; Naidenko; O. Koezuka, Y. Synthesis, 2003, 2, 277.
    58.林宛蓁,國立台灣大學 碩士論文 民國九十一年。

    無法下載圖示
    QR CODE