簡易檢索 / 詳目顯示

研究生: 黃意茹
Yi-Ju Huang
論文名稱: 以場離子顯微鏡研究鎢表面上鈀吸附原子間的交互作用
Study of Pd adatom-adatom interactions on W surfaces by field ion microscopy
指導教授: 傅祖怡
Fu, Tsu-Yi
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 80
中文關鍵詞: 場離子顯微鏡交互作用
英文關鍵詞: Field ion microscopy, Tungsten, Palladium, Interaction
論文種類: 學術論文
相關次數: 點閱:240下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這個研究報告中,研究了在鎢(211)面及鎢(110)面上,鈀吸附原子間的交互作用。在鎢(211)面上的同一通道中,二個鈀原子易形成距離最小(2.74埃)的雙原子團且以此結構在通道中擴散,二者間的交互作用能與次靠近結構的交互作用能相差為-110.2meV,雙原子團的擴散活化能為Ed=0.59±0.01eV。當二個原子間的距離越大,其交互作用呈現有吸引也有排斥的震盪現象。在鎢(110)面上,我們加以探討原子間多體的效應,選擇F3lin=-80meV、F3tri=F3bent=-8meV,其他如四個原子以上彼此之間的多體交互作用,在探討多個吸附原子的自由能時,是很重要的。除此之外,我們也探討了鈀原子團在鎢(110)面上擴散的機制,在雙原子團的擴散中,轉向且質心位移分別為2.23埃及1.58埃的機率與平移(質心位移為2.74埃)的機率差不多,它們都是原子向最鄰近位置運動二步而成,這也可由鈀三原子團發生平移(質心位移為2.74埃)的機率比轉向(質心位移為0)的機率大,而得到輔證。鈀雙原子團在鎢(110)面上的擴散活化能為0.65±0.01eV,鈀三原子團為0.68±0.01eV,當原子數目越多,擴散活化能越大,成單調增加,顯示鈀原子團的擴散皆為沿鄰近位置跳動組合而成,而無特別的交換機制。

    In this report, we study Pd adatom-adatom interactions on W(211) and W(110) surfaces. When two Pd adatoms are in the same channel of W(211) surfaces, they tend to be a dimer separated by 2.74angstrom and the dimer always diffuses along the channel. The interaction energy difference between a dimer and two adatoms separated by 5.48angstrom is –110.2meV. The diffusion activation energy of the dimer is 0.59±0.01eV. The interaction energy of two adatoms appears oscillation as the distance is increasing. A small Pd cluster on W(110) surfaces can form either a one-dimensional linear-chain structure or a two-dimensional island-like structure. From the probability of observing different structure on W(110) surfaces approach-
    ing thermal equilibrium, we discuss the importance of the many-body effect in the adatom-adatom interactions. In this study, we choose F3lin=-80meV and F3tri=F3bent=-8meV. In addition, we measure diffusion parameters of small Pd clusters with 2 to 9 Pd adatoms on W(110) surfaces. From the probability of observing different atomic configurations of Pd dimers and Pd trimers, we discuss the possible cluster diffusion mechanisms. The diffusion activation energy of center of mass of Pd clusters increase with the number of atoms in cluster.

    英文摘要 中文摘要 第一章 簡介 1-1 研究交互作用能的動機…………………………………….1 1-2 為何使用場離子顯微鏡…………………………………….2 1-3 交互作用相關的研究……………………………………….3 1、雙體效應…………………………………………………….3 (1)在鎢(211)面上,吸附原子間的交互作用……………3 (2)在鎢(110)面上,吸附原子間的交互作用……………3 2、多體效應…………………………………………………….4 (1)利用場離子顯微鏡來研究…………………………….4 (2)利用掃描穿隧顯微鏡來研究………………………….5 第二章 儀器與實驗細節 2-1 場離子顯微鏡(FIM)……………………………………..6 1、簡介………………………………………………………….6 2、場離子化的原理…………………………………………….6 3、FIM的成像原理……………………………………………..8 4、儀器…………………………………………………………12 (1)FIM基本構造及組成………………………………….13 (2)改善解析度的裝置……………………………………15 (3)腔體潔淨度……………………………………………15 (4)輔助實驗的裝置………………………………………16 2-2 樣品的準備…………………………………………………19 2-3 影像說明……………………………………………………20 2-4 數據分析……………………………………………………22 1、吸附原子間的交互作用……………………………………22 2、PdN-W(110)面上的擴散………………………………….23 第三章 分析結果與討論 3-1 二個鈀原子在鎢(211)面上的交互作用...………………28 1、由平衡位置的機率分布求得不同鍵結狀態的交互作用…29 2、鈀雙原子團在鎢(211)面上的擴散…………………….50 3-2 PdN-W(110)之島形分布………………………………….51 1、決定三原子間的交互作用大小……………………………52 2、決定其他形式的多體能量…………………………………64 3-3 PdN-W(110)之擴散……………………………………….68 1、鈀雙原子團…………………………………………………69 2、鈀三原子團…………………………………………………71 3、鈀多原子團…………………………………………………73 第四章 結論…………………………………………………………77 4-1 二個鈀原子在鎢(211)面上的交互作用………………….77 4-2 鈀原子在鎢(110)面上的多體交互作用………………….77 4-3 鈀原子團在鎢(110)面上的擴散………………………….78 參考資料………………………………………………………………79

    1. V.R. Dhanak and D.W. Bassett, Surf. Sci. 238(1990)289.
    2. D.W. Bassett, Thin Solid Films 48(1978)237.
    3. G. Ehrlich and F.G. Hudda, J. Chem. Phys. 44(1966)1039.
    4. D.W. Bassett and M.J. Parsley, J. Phys. D (Apply.Phys)3 (1970)707.
    5. T.T. Tsong and G.L. Kellogg, Phys. Rev. B 12(1975)1343.
    6. P.L. Cowan and T.T. Tsong, Phys. Lett. A 53(1975)383.
    7. T.T. Tsong, P.L. Cowan and G.L. Kellogg, Thin Solid Films 25(1975)97.
    8. D.W. Bassett, J. Phys. C (Solid State Phys.) 9(1976)2491.
    9. D.C. Senft and G. Ehrlich, Phys. Rev. Lett. 74(1995)294.
    10. W. R. Graham and G. Ehrlich, J. Phys. F (Met. Phys.) 4(1974)L212.
    11. K. Stolt, W. R. Graham and G. Ehrlich, J. Chem. Phys. 65(1076)3206.
    12. D. A. Reed and G. Ehrlich, Surf. Sci. 151(1985)143.
    13. W. Xu and J. B. Adams, Surf. Sci. 339(1995)241.
    14. A. F. Voter, J. Chem. Phys. 82(1985)1890.
    15. K. Stolt, J.D. Wrigley and G. Ehrlich, J. Chem. Phys. 69(1978)1151.
    16. P.L. Cowan, PhD Thesis, Department of Physics, Pennsylvania State University, 1977(unpublished).
    17. D.A. Reed and G. Ehrlich, Phil. Mag. 32(1975)1095.
    18. R. Casanova and T.T. Tsong, Phys. Rev. B 22(1980)5590.
    19. T.T. Tsong and R. Casanova, Phys. Rev. Lett. 47(1981)113.
    20. T.T. Tsong and R. Casanova, Phys. Rev. B 24(1981)3063.
    21. F. Watanabe and G. Ehrlich, J. Chem. Phys. 95(1991)6075.
    22. F. Watanabe and G. Ehrlich, Phys. Rev. Lett. 62(1989)1146.
    23. H.W. Fink, K. Faulian and E. Bauer, Phys. Rev. Lett. 44(1980)1008.
    24. T. L. Hill, Statistical Mechanics (Mcgraw-Hill, New York, 1956).
    25. W. R. Graham and G. Ehrlich, Phys. Rev. Lett. 32(1974)1309.
    26. S.J. Koh and G. Ehrlich, Phys. Rev. B 60(1999)5981.
    27. W. Teller, An Introduction to Probability Theory and its Applications
    (Wiley, New York, 1976).
    28. T.Y. Fu, L.C. Cheng, Y.J. Hwang and T.T. Tsong, Surf. Sci. 507-510
    (2002)103-107.
    29. Handbook of Chemistry and Physics, edited by D.R. Lide (CRC Press, Boca Raton, 1998).
    30. H. Margenau, Rev. Mod. Phys. 11(1939)1.
    31. W. Kohn and K.H. Lau, Solid State Commun. 18(1976)533.
    32. J. Lopez and J.C. Le Bosse, Surf. Sci. 109(1981)331.
    33. T.B. Grimley, Proc. Phys. Soc., B90(1967)751; B92(1967)776.
    34. T.L. Einstein and J.R. Schrieffer, Phys. Rev. B 7(1929)3629.
    35. T.L. Einstein, Phys. Rev. B 16(1977)3411
    36. N.R. Burke, Surf. Sci. 58(1976)49.
    37. A.M. Gabovich, L.G. IL’Chenko,E. Pashitaskii and Yu.A. Romanov, Surf. Sci. 94(1980)179.
    38. F. Watanabe and G. Ehrlich, Phys. Rev. Lett. 62(1989)1146.
    39. F. Watanabe and G. Ehrlich, J. Chem. Phys. 96(1992)3191.
    40. H.W. Fink and G. Ehrlich, Phys. Rev. Lett. 52(1984)1532.
    41. H.W. Fink and G. Ehrlich, J. Chem. Phys. 81(1984)4657.
    42. T.T. Tsong and R. Casanova, Phys. Rev. B 24(1981)3063.
    43. T.T. Tsong, Phys. Rev. Lett. 31(1973)1207.
    44. D.C.Senft and G. Ehrlich, Phys. Rev. Lett. 74(1995)294.
    45. A.F. Wright, M.S. Daw, and C.Y. Fong, Phys. Rev. B 42(1990)9409.
    46. L. Österlund, M.Ø. Pedersen, I. Stensgaard, E. Lægsgaard and F. Besenbacher, Phys. Rev. Lett. 83(1999)4812.
    47. T.T. Tsong and R. Casanova, Phys. Rev. B 22(1980)4632.
    48. T.Y. Fu and T.T. Tsong, Surf. Sci. 421(1999)157.

    QR CODE