簡易檢索 / 詳目顯示

研究生: 曾筱庭
Tseng, Hsiao-Ting
論文名稱: 利用資料探勘探討大豆成分與乳癌之關係
Exploring the relation of soy compounds and breast cancer using data mining
指導教授: 謝佳倩
Hsieh, Chia-Chien
學位類別: 碩士
Master
系所名稱: 人類發展與家庭學系
Department of Human Development and Family Studies
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 111
中文關鍵詞: 大豆乳癌雌激素植物性雌激素決策樹關聯規則探勘
英文關鍵詞: Soy, Breast cancer, Estrogen, Phytoestrogen, Decision tree, Association rule mining
DOI URL: http://doi.org/10.6345/THE.NTNU.DHDFS.034.2018.A06
論文種類: 學術論文
相關次數: 點閱:192下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 乳癌是威脅全球女性健康甚至生命的疾病之一,流行病學研究顯示台灣乳癌發生率在近二十年有上升的趨勢。飲食是影響乳癌發展的因子之一,過去流行病學研究指出攝取大豆與降低乳癌風險的關係,但在部份體內與體外試驗中卻看到相反的結果。因此攝取大豆與降低乳癌風險的關係仍存有些爭議。大豆中有許多具生物活性的成份,其中包括植物性雌激素和具活性的蛋白、胜肽。而大豆異黃酮是大豆中最主要的植物性雌激素類成份,由於其結構與雌二醇相似,因此在不同條件下,可以扮演協同或是拮抗雌激素的作用。近年來發表了許多以電腦與資訊相關方法進行的生命科學研究,有助於精準醫學的發展。本研究利用資料探勘相關模型探討大豆攝取與降低乳癌風險之關係,使用的資料探勘模型包括決策樹分類模型和關聯規則探勘,建立一大豆與乳癌為主題之資料庫,其中包括了201篇原著研究及478筆資料。根據研究性質,將資料庫分成體內試驗、體外試驗與人類研究三個子資料庫,探討大豆中不同類別成分、其乳癌之類型以及激素存在與否不同條件下,大豆對乳癌發展的影響是否有所差異。以大豆成分類別來看,蛋白胜肽類成份對乳癌正面影響關聯性較高,以正面影響為主;而植物性雌激素類則有較多反向結果,其中以Daidzein對乳癌具有負面影響,其他大豆中植物雌激素類成分如Coumestrol亦對乳癌發展具有部分負面影響。此外分析結果也顯示大豆影響乳癌會因不同乳癌類型而有所差異,在Luminal類型的乳癌中看到大豆之影響多有不一致的結果,而三陰性乳癌則多有正面的影響。而針對不同受體表現分析結果顯示,大豆對ER+和PR+表現之乳癌會有不一致影響結果,其中是以植物性雌激素類成分有負面影響。而對ER-和PR-類型乳癌以正面影響為主。而在雌激素存在之下,如停經前婦女,大豆成分對乳癌的正面影響也有較強的關聯。總結來說,大豆影響乳癌之結果取決於多種不同的條件。因此在建議乳癌病人攝取大豆與其相關製品時,需要考慮其乳癌類型以及選擇特定之大豆成份。

    Breast cancer is one of the diseases that threatens the health and even life of women around the world. Epidemiological studies have shown that the incidence of breast cancer has risen in the past 20 years in Taiwan. Dietary pattern is one of the factors to influence breast cancer development. Soy intake is associated to reduce the risk of breast cancer in some epidemiologic studies. However, there were some conflicting results in both in vitro and in vivo studies. It is still controversial between soy intake and the risk of breast cancer. There are abundant bioactive compounds in soy, including the phytoestrogen and bioactive proteins and peptides. The main phytoestrogen of soy are isoflavones, which have similar structure with 17-β-estradiol, and exerts estrogenic or antiestrogenic effects. Depend on different condition, isoflavones can effect as estrogen antagonist or agonist. Recently, scientists apply the computational and information-related methods to assist the development of precision medicine on life sciences. In this study, we use the data mining model including decision tree classification and association rule mining to analyize the relation between soy consumption and the risk of breast cancer. The database of soy-breast cancer containing 201 original research papers and 478 data, whcih was separated to three sub-databases included cell, animal and human studies. The aim of this study is to explore whether the effects of soy on breast cancer development are different under different conditions of different category compounds in soy, the type of breast cancer, and the presence or absence of hormones receptors. The results have shown that the category of protein or peptides is related to the positive effect on the breast cancer. However, the category of phytoestrogen has more conflicting results. Especially, we found that the Daidzein is the specific compound that related to negative effect to the breast cancer. Other phytoestrogen compounds such as Coumestrol also has some negative impact on breast cancer development. Soy has more conflict results on the breast cancer of luminal subtype but has more positive effects on the triple negative breast cancer. According to the results of different receptor performance analysis, soy has a negative effect on breast cancer of ER+ and PR+, which is especially phytoestrogen compounds have negative effect. And it is mainly positive for ER- and PR- type breast cancer. Regard to the presence of estrogen, soy has a stronger positive correlation with on premenopausal breast cancer women.with In conclusion, the association between soy and breast cancer is depended on variety conditions. Thus, the recommendation for breast cancer patients to take soy products should consider the tumor types and specific soy compounds.

    第一章 文獻回顧 1 第一節 乳癌 1 一、乳癌的流行病學 1 二、乳癌的診斷與分類 2 1.臨床上乳癌之診斷與分類 2 2.乳癌各受體表現型態分類 3 三、乳癌的風險因子 4 1.飲食因子與乳癌 4 2.雌激素與乳癌 5 四、乳癌的治療與預後 7 第二節 大豆 8 一、植物性雌激素類成分 8 二、大豆蛋白質、胜肽類成分 11 第三節 電腦生物學 14 一、資料探勘 14 1.分類法 15 2.關聯規則探勘 16 第二章 研究動機、目的與假說 17 第一節 研究動機與目的 17 第二節 研究假說與問題 18 一、研究假說 18 二、研究問題 18 第三章 研究材料與方法 19 第一節 研究材料來源 19 一、資料庫資料來源 19 二、建模與統計分析軟體 19 第二節 研究方法與模式 20 一、研究流程與架構 20 二、建立本研究Soy-Breast Cancer資料庫 21 三、卡方檢定 25 四、決策樹分類模型 27 五、關聯規則探勘 28 第四章 實驗結果 29 第一節、大豆成分與乳癌發展之關係探討資料庫建立 29 一、全體資料 29 二、細胞資料庫 30 三、動物資料庫 31 四、人類資料庫 31 第二節、大豆中不同類別成分對乳癌發展之影響 32 第三節、大豆成分影響乳癌發展是否與乳癌型態有關 37 一、大豆對不同乳癌受體表現之發展影響 37 二、大豆對不同乳癌類型發展之影響 42 三、關聯規則探勘大豆對不同乳癌類型之影響 46 1. 關聯規則探勘細胞資料庫 46 1.1.蛋白胜肽類成分對乳癌為正面影響的關聯規則 46 1.2.植物性雌激素成分對乳癌為正面影響的關聯規則 47 1.3.對乳癌為負面影響的關聯規則 47 2.關聯規則探勘動物資料 49 3.關聯規則探勘人類資料 50 第四節、大豆成分影響乳癌的發展是否與雌激素存在與否有關 52 一、雌激素存在與否對乳癌發展的影響 52 二、關聯規則探勘大豆雌激素存在與否之影響 55 1.關聯規則探勘動物資料 55 2.關聯規則探勘人類資料 56 3.關聯規則探勘不同雌激素狀況之動物與人類資料 58 第五章 討論 60 第一節、大豆中不同類別成分對乳癌的影響 60 第二節、大豆成分影響乳癌發展是否與乳癌型態有關 61 第三節、大豆成分影響乳癌的發展是否與雌激素存在與否有關 64 第四節、本研究資料庫之限制 66 第六章 結論 67 第七章 參考文獻 70 第八章 附錄 82 第一節、卡方檢定 82 第二節、決策樹程式碼 83 第三節、關聯規則程式碼 87 第四節、資料庫中文獻 93

    行政院衛生福利部:中華民國103年癌症登記報告。臺北,衛生福利部,2014。
    彭文正譯,資料採礦:顧客關係管理暨電子行銷之應用,台北:數博網資訊,民90。
    黄文、王正林,利用 R 語言打通大數據的經脈,台北市,佳魁資訊,2015。
    Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. Paper presented at the Proc. 20th int. conf. very large data bases, VLDB.
    Alekel, D. L., St Germain, A., Peterson, C. T., Hanson, K. B., Stewart, J. W., & Toda, T. (2000). Isoflavone-rich soy protein isolate attenuates bone loss in the lumbar spine of perimenopausal women. The American journal of clinical nutrition, 72(3), 844-852.
    Allred, C. D., Ju, Y. H., Allred, K. F., Chang, J., & Helferich, W. G. (2001). Dietary genistin stimulates growth of estrogen-dependent breast cancer tumors similar to that observed with genistein. Carcinogenesis, 22(10), 1667-1673.
    Armitage, P., & Doll, R. (1954). The age distribution of cancer and a multi-stage theory of carcinogenesis. British Journal of Cancer, 8(1), 1.
    Batterham, M., Tapsell, L., Charlton, K., O'shea, J., & Thorne, R. (2017). Using data mining to predict success in a weight loss trial. Journal of Human Nutrition and Dietetics, 30(4), 471-478.
    Beerenwinkel, N., Schwarz, R. F., Gerstung, M., & Markowetz, F. (2014). Cancer evolution: mathematical models and computational inference. Systematic biology, 64(1), e1-e25.
    Bellaachia, A., & Guven, E. (2006). Predicting breast cancer survivability using data mining techniques. Age, 58(13), 10-110.
    Bishayee, A., Ahmed, S., Brankov, N., & Perloff, M. (2011). Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. Frontiers in bioscience: a journal and virtual library, 16, 980.

    Harold J. Burstein, Sarah Temin, Holly Anderson, Thomas A. Buchholz, Nancy E. Davidson, Karen E. Gelmon, Sharon H. Giordano, Clifford A. Hudis, Diana Rowden, Alexander J. Solky, Vered Stearns, Eric P. Winer, and Jennifer J. Griggs. (2014). Adjuvant endocrine therapy for women with hormone receptor–positive breast cancer: American Society of Clinical Oncology clinical practice guideline focused update. Journal of Clinical Oncology, 32(21), 2255-2269.
    Castro, C. C., Pagnussat, A. S., Orlandi, L., Worm, P., Moura, N., Etgen, A. M., & Netto, C. A. (2012). Coumestrol has neuroprotective effects before and after global cerebral ischemia in female rats. Brain research, 1474, 82-90.
    Cederroth, C. R., & Nef, S. (2009). Soy, phytoestrogens and metabolism: A review. Molecular and cellular endocrinology, 304(1), 30-42.
    Chaves, R. P., Silva, S. R. D., Nascimento Neto, L. G., Carneiro, R. F., Silva, A. L. C. D., Sampaio, A. H., Sousa, B. L., Cabral, M.G., Videira, P. A., Teixeira, E. H., Nagano, C. S. (2018). Structural characterization of two isolectins from the marine red alga Solieria filiformis (Kützing) PW Gabrielson and their anticancer effect on MCF-7 breast cancer cells. International journal of biological macromolecules, 107, 1320-1329.
    Cheng, L., Xia, T. S., Wang, Y. F., Zhou, W., Liang X. Q., Xue, J. Q., Shi, L., Wang, Y., Ding, Q. (2014). The apoptotic effect of D Rhamnose β-hederin, a novel oleanane-type triterpenoid saponin on breast cancer cells. PloS one, 9(3), e90848.
    Choi, E. J., Ahn, W. S., & Bae, S. M. (2009). Equol induces apoptosis through cytochrome c-mediated caspases cascade in human breast cancer MDA-MB-453 cells. Chemico-biological interactions, 177(1), 7-11.
    Dai, X., Cheng, H., Bai, Z., & Li, J. (2017). Breast cancer cell line classification and its relevance with breast tumor subtyping. Journal of Cancer, 8(16), 3131.
    De Abreu, F. B., Schwartz, G. N., Wells, W. A., & Tsongalis, G. J. (2014). Personalized therapy for breast cancer. Clin Genet, 86(1), 62-67.
    de Mejia, E. G., & Dia, V. P. (2010). The role of nutraceutical proteins and peptides in apoptosis, angiogenesis, and metastasis of cancer cells. Cancer and Metastasis Reviews, 29(3), 511-528.

    De Mejía, E. G., & Prisecaru, V. I. (2005). Lectins as bioactive plant proteins: a potential in cancer treatment. Critical reviews in food science and nutrition, 45(6), 425-445.
    Dent, R., Trudeau, M., Pritchard, K. I., Hanna, W. M., Kahn, H. K., Sawka, C. A., Lickley, L. A., Rawlinson, E., Sun, P., Narod, S.A. (2007). Triple-negative breast cancer: clinical features and patterns of recurrence. Clinical cancer research, 13(15), 4429-4434.
    Dia, V. P., & de Mejia, E. G. (2010). Lunasin promotes apoptosis in human colon cancer cells by mitochondrial pathway activation and induction of nuclear clusterin expression. Cancer letters, 295(1), 44-53.
    Dijsselbloem, N., Berghe, W. V., De Naeyer, A., & Haegeman, G. (2004). Soy isoflavone phyto-pharmaceuticals in interleukin-6 affections: multi-purpose nutraceuticals at the crossroad of hormone replacement, anti-cancer and anti-inflammatory therapy. Biochemical pharmacology, 68(6), 1171-1185.
    Edge, S. B., & Compton, C. C. (2010). The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Annals of surgical oncology, 17(6), 1471-1474.
    Eisenhaber, F., & Sherman, W. A. (2014). 10 years for the Journal of Bioinformatics and Computational Biology (2003–2013)—A retrospective. Journal of bioinformatics and computational biology, 12(03), 1471001.
    Erdmann, K., Cheung, B. W., & Schröder, H. (2008). The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. The Journal of nutritional biochemistry, 19(10), 643-654.
    Fang, E. F., Wong, J. H., & Ng, T. B. (2010). Thermostable Kunitz trypsin inhibitor with cytokine inducing, antitumor and HIV-1 reverse transcriptase inhibitory activities from Korean large black soybeans. Journal of bioscience and bioengineering, 109(3), 211-217.
    Fanti, P., Asmis, R., Stephenson, T. J., Sawaya, B. P., & Franke, A. A. (2006). Positive effect of dietary soy in ESRD patients with systemic inflammation—correlation between blood levels of the soy isoflavones and the acute-phase reactants. Nephrology Dialysis Transplantation, 21(8), 2239-2246.

    Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D. M., Forman, D., Bray, F. (2015). Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International journal of cancer, 136(5).
    Folkerd, E. J., & Dowsett, M. (2010). Influence of sex hormones on cancer progression. Journal of Clinical Oncology, 28(26), 4038-4044.
    Global Burden of Disease Cancer Collaboration. (2015). The global burden of cancer 2013. JAMA oncology, 1(4), 505-527.
    Gonzalez de Mejia, E., Vásconez, M., de Lumen, B. O., & Nelson, R. (2004). Lunasin concentration in different soybean genotypes, commercial soy protein, and isoflavone products. Journal of agricultural and food chemistry, 52(19), 5882-5887.
    Guha, N., Kwan, M. L., Quesenberry, C. P., Weltzien, E. K., Castillo, A. L., & Caan, B. J. (2009). Soy isoflavones and risk of cancer recurrence in a cohort of breast cancer survivors: the Life After Cancer Epidemiology study. Breast cancer research and treatment, 118(2), 395-405.
    Guo, T. L., McCay, J. A., Zhang, L. X., Brown, R. D., You, L., Karrow, N. A., Germolec, D. R., White, K. L. Jr. (2001). Genistein modulates immune responses and increases host resistance to B16F10 tumor in adult female B6C3F1 mice. The Journal of nutrition, 131(12), 3251-3258.
    Gupta, S., Kumar, D., & Sharma, A. (2011). Data mining classification techniques applied for breast cancer diagnosis and prognosis. Indian Journal of Computer Science and Engineering (IJCSE), 2(2), 188-195.
    Hamdy, S. M., Latif, A. K. M. A., Drees, E. A., & Soliman, S. M. (2012). Prevention of rat breast cancer by genistin and selenium. Toxicology and industrial health, 28(8), 746-757.
    He, J., Wang, S., Zhou, M., Yu, W., Zhang, Y., & He, X. (2015). Phytoestrogens and risk of prostate cancer: a meta-analysis of observational studies. World journal of surgical oncology, 13(1), 231.
    Ho, M.-L., Hsiao, Y.-H., Su, S.-Y., Chou, M.-C., & Liaw, Y.-P. (2015). Mortality of breast cancer in Taiwan, 1971–2010: Temporal changes and an age–period–cohort analysis. Journal of Obstetrics and Gynaecology, 35(1), 60-63.
    Holliday, D. L., & Speirs, V. (2011). Choosing the right cell line for breast cancer research. Breast cancer research, 13(4), 215.
    Hormones, E., & Group, B. C. C. (2002). Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. Journal of the National Cancer Institute, 94(8), 606-616.
    Hothorn, T., Hornik, K., & Zeileis, A. (2015). ctree: Conditional Inference Trees. The Comprehensive R Archive Network.
    a. Hsieh, C.-C., Hernández-Ledesma, B., & Ben, O. (2010). Lunasin, a novel seed peptide, sensitizes human breast cancer MDA-MB-231 cells to aspirin-arrested cell cycle and induced apoptosis. Chemico-biological interactions, 186(2), 127-134.
    b. Hsieh, C.-C., Hernández-Ledesma, B., Jeong, H. J., Park, J. H., & Ben, O. (2010). Complementary roles in cancer prevention: protease inhibitor makes the cancer preventive peptide lunasin bioavailable. PloS one, 5(1), e8890.
    Hsieh, C.-C., Tseng, H.-T. Exploring the relation of soy compounds and breast cancer using data mining. (manuscript)
    Hwang, C. S., Kwak, H. S., Lim, H. J., Lee, S. H., Kang, Y. S., Choe, T. B., Hur, H. G., Han, K. O. (2006). Isoflavone metabolites and their in vitro dual functions: they can act as an estrogenic agonist or antagonist depending on the estrogen concentration. The Journal of steroid biochemistry and molecular biology, 101(4), 246-253.
    Hwang, Y. W., Kim, S. Y., Jee, S. H., Kim, Y. N., & Nam, C. M. (2009). Soy food consumption and risk of prostate cancer: a meta-analysis of observational studies. Nutrition and cancer, 61(5), 598-606.
    Islam, F., Gopalan, V., Lam, A. K.-Y., & Kabir, S. R. (2018). Pea lectin inhibits cell growth by inducing apoptosis in SW480 and SW48 cell lines. International journal of biological macromolecules.
    Iwasaki, M., Inoue, M., Otani, T., Sasazuki, S., Kurahashi, N., Miura, T., Yamamoto, S., Tsugane, S. (2008). Plasma isoflavone level and subsequent risk of breast cancer among Japanese women: a nested case-control study from the Japan Public Health Center-based prospective study group. Journal of Clinical Oncology, 26(10), 1677-1683.

    Izumi, T., Saito, M., Obata, A., Arii, M., Yamaguchi, H., & Matsuyama, A. (2007). Oral intake of soy isoflavone aglycone improves the aged skin of adult women. Journal of nutritional science and vitaminology, 53(1), 57-62.
    Jahanzeb, M. (2007). Reducing the risk for breast cancer recurrence after completion of tamoxifen treatment in postmenopausal women. Clinical therapeutics, 29(8), 1535-1547.
    Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: a cancer journal for clinicians, 61(2), 69-90.
    Jeong, H. J., Jeong, J. B., Kim, D. S., Park, J. H., Lee, J. B., Kweon, D.-H., Chung, G. Y., Seo, E. W., de Lumen, B. O. (2007). The cancer preventive peptide lunasin from wheat inhibits core histone acetylation. Cancer letters, 255(1), 42-48.
    Jeong, H. J., Park, J. H., Lam, Y., & de Lumen, B. O. (2003). Characterization of lunasin isolated from soybean. Journal of agricultural and food chemistry, 51(27), 7901-7906.
    Ju, Y. H., Allred, C. D., Allred, K. F., Karko, K. L., Doerge, D. R., & Helferich, W. G. (2001). Physiological concentrations of dietary genistein dose-dependently stimulate growth of estrogen-dependent human breast cancer (MCF-7) tumors implanted in athymic nude mice. The Journal of nutrition, 131(11), 2957-2962.
    Kennedy, A. R., Zhou, Z., Donahue, J. J., & Ware, J. H. (2006). Protection against adverse biological effects induced by space radiation by the Bowman-Birk inhibitor and antioxidants. Radiation research, 166(2), 327-332.
    Kharya, S. (2012). Using data mining techniques for diagnosis and prognosis of cancer disease. arXiv preprint arXiv:1205.1923.
    Kim, E. J., Choi, M.-R., Park, H., Kim, M., Hong, J. E., Lee, J.-Y., Chun, H. S., Lee, K. W., Park, J. H. Y. (2011). Dietary fat increases solid tumor growth and metastasis of 4T1 murine mammary carcinoma cells and mortality in obesity-resistant BALB/c mice. Breast cancer research, 13(4), R78.
    Kim, H.-A., Jeong, K.-S., & Kim, Y. K. (2008). Soy extract is more potent than genistein on tumor growth inhibition. Anticancer research, 28(5A), 2837-2841.
    Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. (2007). Supervised machine learning: A review of classification techniques.

    Lagarda-Diaz, I., Guzman-Partida, A. M., & Vazquez-Moreno, L. (2017). Legume lectins: proteins with diverse applications. International journal of molecular sciences, 18(6), 1242.
    Lecomte, S., Chalmel, F., Ferriere, F., Percevault, F., Plu, N., Saligaut, C., Surel, C., Efstathiou, T., Pakdel, F. (2017). Glyceollins trigger anti-proliferative effects through estradiol-dependent and independent pathways in breast cancer cells. Cell Communication and Signaling, 15(1), 26.
    Lehmann, B. D., & Pietenpol, J. A. (2014). Identification and use of biomarkers in treatment strategies for triple‐negative breast cancer subtypes. The Journal of pathology, 232(2), 142-150.
    Liang, J., & Shang, Y. (2013). Estrogen and cancer. Annual review of physiology, 75, 225-240.
    Lorizio, W., Wu, A. H. B., Beattie, M. S., Rugo, H., Tchu, S., Kerlikowske, K., & Ziv, E. (2012). Clinical and biomarker predictors of side effects from tamoxifen. Breast cancer research and treatment, 132(3), 1107-1118.
    Losso, J. N. (2008). The biochemical and functional food properties of the Bowman-Birk inhibitor. Critical reviews in food science and nutrition, 48(1), 94-118.
    Lu, L.-J. W., Anderson, K. E., Grady, J. J., Kohen, F., & Nagamani, M. (2000). Decreased Ovarian Hormones during a Soya Diet: Implications for Breast Cancer Prevention. Cancer Research, 60(15), 4112-4121.
    Luscombe, N. M., Greenbaum, D., & Gerstein, M. (2001). What is bioinformatics? A proposed definition and overview of the field. Methods of information in medicine, 40(4), 346-358.
    Ma, T.-C., Zhou, R.-H., Wang, X., Li, J.-L., Sang, M., Zhou, L., Zhuang, K., Hou, W., Guo, D. Y., Ho, W.-Z. (2016). Soybean-derived Bowman-Birk Inhibitor (BBI) Inhibits HIV Replication in Macrophages. Scientific reports, 6, 34752.
    Magee, P. J., Allsopp, P., Samaletdin, A., & Rowland, I. R. (2014). Daidzein, R-(+) equol and S-(−) equol inhibit the invasion of MDA-MB-231 breast cancer cells potentially via the down-regulation of matrix metalloproteinase-2. European journal of nutrition, 53(1), 345-350.

    Majali, J., Niranjan, R., Phatak, V., & Tadakhe, O. (2015). Data mining techniques for diagnosis and prognosis of cancer. International Journal of Advanced Research in Computer and Communication Engineering, 4(3), 613-616.
    Messina, M. J. (1999). Legumes and soybeans: overview of their nutritional profiles and health effects. The American journal of clinical nutrition, 70(3), 439s-450s.
    Nahar, J., Tickle, K. S., Ali, A. S., & Chen, Y.-P. P. (2011). Significant cancer prevention factor extraction: an association rule discovery approach. Journal of medical systems, 35(3), 353-367.
    Ng, T. B., Ye, X. J., Wong, J. H., Fang, E. F., Chan, Y. S., Pan, W., Ye, X. Y., Sze, S. C., Zhang, K. Y., Liu, F. (2011). Glyceollin, a soybean phytoalexin with medicinal properties. Applied microbiology and biotechnology, 90(1), 59-68.
    Nichols, H. B., Stürmer, T., Lee, V. S., Anderson, C., Lee, J. S., Roh, J. M., Visvanathan, K., Muss, H., Kushi, L. H. (2017). Breast Cancer Chemoprevention in an Integrated Health Care Setting. JCO Clinical Cancer Informatics, 1, 1-12.
    Nordling, C. (1953). A new theory on the cancer-inducing mechanism. British Journal of Cancer, 7(1), 68.
    Pabona, J. M. P., Dave, B., Su, Y., Montales, M. T. E., Ben, O., De Mejia, E. G., Rahal, O. M., Simmen, R. C. (2013). The soybean peptide lunasin promotes apoptosis of mammary epithelial cells via induction of tumor suppressor PTEN: similarities and distinct actions from soy isoflavone genistein. Genes & nutrition, 8(1), 79-90.
    Padmapriya, B., & Velmurugan, T. (2014). A survey on breast cancer analysis using data mining techniques. Paper presented at the Computational Intelligence and Computing Research (ICCIC), 2014 IEEE International Conference on.
    Park, J. H., Jeong, H. J., & de Lumen, B. O. (2005). Contents and bioactivities of lunasin, bowman− birk inhibitor, and isoflavones in soybean seed. Journal of agricultural and food chemistry, 53(20), 7686-7690.
    Park, S. H., Jang, S. Y., Kim, H., & Lee, S. W. (2014). An association rule mining-based framework for understanding lifestyle risk behaviors. PloS one, 9(2), e88859.

    Pierce, J. P., Natarajan, L., Caan, B. J., & et al. (2007). Influence of a diet very high in vegetables, fruit, and fiber and low in fat on prognosis following treatment for breast cancer: The women's healthy eating and living (whel) randomized trial. JAMA, 298(3), 289-298. doi:10.1001/jama.298.3.289
    Pilsakova, L., Riecanský, I., & Jagla, F. (2010). The physiological actions of isoflavone phytoestrogens. Physiological Research, 59(5), 651.
    Prietsch, R., Monte, L. d., Da Silva, F., Beira, F., Del Pino, F., Campos, V., Collares, T., Pinto, L. S., Spanevello, R. M., Gamaro, G.D., Braganhol, E. (2014). Genistein induces apoptosis and autophagy in human breast MCF-7 cells by modulating the expression of proapoptotic factors and oxidative stress enzymes. Molecular and cellular biochemistry, 390(1-2), 235-242.
    Ramdath, D. D., Padhi, E. M., Sarfaraz, S., Renwick, S., & Duncan, A. M. (2017). Beyond the Cholesterol-Lowering Effect of Soy Protein: A Review of the Effects of Dietary Soy and Its Constituents on Risk Factors for Cardiovascular Disease. Nutrients, 9(4), 324.
    Rowlands, J., Berhow, M., & Badger, T. (2002). Estrogenic and antiproliferative properties of soy sapogenols in human breast cancer cells in vitro. Food and Chemical Toxicology, 40(12), 1767-1774.
    Rüfer, C. E., & Kulling, S. E. (2006). Antioxidant activity of isoflavones and their major metabolites using different in vitro assays. Journal of agricultural and food chemistry, 54(8), 2926-2931.
    Safavi, F., & Rostami, A. (2012). Role of serine proteases in inflammation: Bowman–Birk protease inhibitor (BBI) as a potential therapy for autoimmune diseases. Experimental and molecular pathology, 93(3), 428-433.
    Samavat, H., & Kurzer, M. S. (2015). Estrogen metabolism and breast cancer. Cancer letters, 356(2), 231-243.
    Setchell, K. D., & Clerici, C. (2010). Equol: history, chemistry, and formation. The Journal of nutrition, 140(7), 1355S-1362S.
    Shi, J., Arunasalam, K., Yeung, D., Kakuda, Y., Mittal, G., & Jiang, Y. (2004). Saponins from edible legumes: chemistry, processing, and health benefits. Journal of medicinal food, 7(1), 67-78.

    Shu, X. O., Jin, F., Dai, Q., Wen, W., Potter, J. D., Kushi, L. H., Ruan, Z., Gao, Y. T., Zheng, W. (2001). Soyfood intake during adolescence and subsequent risk of breast cancer among Chinese women. Cancer Epidemiology and Prevention Biomarkers, 10(5), 483-488.
    Shukla, D., Patel, S. B., & Sen, A. K. (2014). A literature review in health informatics using data mining techniques. International Journal of Software and Hardware Research in Engineering, 2(2), 123-129.
    Siegel, R. L., Miller, K. D., & Jemal, A. (2015). Cancer statistics, 2015. CA: a cancer journal for clinicians, 65(1), 5-29.
    Song, T. T., Hendrich, S., & Murphy, P. A. (1999). Estrogenic activity of glycitein, a soy isoflavone. Journal of agricultural and food chemistry, 47(4), 1607-1610.
    Soni, J., Ansari, U., Sharma, D., & Soni, S. (2011). Predictive data mining for medical diagnosis: An overview of heart disease prediction. International Journal of Computer Applications, 17(8), 43-48.
    Spagnuolo, C., Russo, G. L., Orhan, I. E., Habtemariam, S., Daglia, M., Sureda, A., Nabavi, S. F., Devi, K. P., Loizzo, M. R., Tundis, R. Nabavi, S. M. (2015). Genistein and cancer: current status, challenges, and future directions. Advances in Nutrition: An International Review Journal, 6(4), 408-419.
    Srikanth, S., & Chen, Z. (2016). Plant Protease Inhibitors in Therapeutics-Focus on Cancer Therapy. Frontiers in pharmacology, 7.
    Stanford, J. L., Herrinton, L. J., Schwartz, S. M., & Weiss, N. S. (1995). Breast cancer incidence in Asian migrants to the United States and their descendants. Epidemiology, 181-183.
    Stein, C., & Colditz, G. (2004). Modifiable risk factors for cancer. British Journal of Cancer, 90(2), 299-303.
    Suzuki, T., Matsuo, K., Tsunoda, N., Hirose, K., Hiraki, A., Kawase, T., Yamashita, T., Iwata, H., Tanaka, H., Tajima, K. (2008). Effect of soybean on breast cancer according to receptor status: a case–control study in Japan. International journal of cancer, 123(7), 1674-1680.

    Tayefi, M., Esmaeili, H., Saberi Karimian, M., Amirabadi Zadeh, A., Ebrahimi, M., Safarian, M., Nematye, M., Mohammad Reza Parizadeha, S., Ferns, G., Ghayour-Mobarhan, M. (2017). The application of a decision tree to establish the parameters associated with hypertension. Computer Methods and Programs in Biomedicine, 139, 83-91.
    Tinoco, G., Warsch, S., Glück, S., Avancha, K., & Montero, A. J. (2013). Treating breast cancer in the 21st century: emerging biological therapies. Journal of Cancer, 4(2), 117.
    Touillaud, M. S., Pillow, P. C., Jakovljevic, J., Bondy, M. L., Singletary, S. E., Li, D., & Chang, S. (2005). Effect of dietary intake of phytoestrogens on estrogen receptor status in premenopausal women with breast cancer. Nutrition and cancer, 51(2), 162-169.
    Trock, B. J., Hilakivi-Clarke, L., & Clarke, R. (2006). Meta-analysis of soy intake and breast cancer risk. Journal of the National Cancer Institute, 98(7), 459-471.
    Uifălean, A., Schneider, S., Ionescu, C., Lalk, M., & Iuga, C. A. (2015). Soy isoflavones and breast cancer cell lines: Molecular mechanisms and future perspectives. Molecules, 21(1), 13.
    Valentiner, U., Fabian, S., Schumacher, U., & Leathem, A. J. (2003). The influence of dietary lectins on the cell proliferation of human breast cancer cell lines in vitro. Anticancer Res, 23(2b), 1197-1206.
    Wada, K., Nakamura, K., Tamai, Y., Tsuji, M., Kawachi, T., Hori, A., Takeyama, N., Tanabashi, S., Matsushita, S., Tokimitsu, N., Nagata, C. (2013). Soy isoflavone intake and breast cancer risk in Japan: from the Takayama study. International journal of cancer, 133(4), 952-960.
    Waqas, M. K., Akhtar, N., Mustafa, R., Jamshaid, M., Khan, H. M. S., & Murtaza, G. (2015). Dermatological and cosmeceutical benefits of Glycine max (soybean) and its active components. Acta Pol Pharm, 72(1), 3-11.
    Wu, A., Koh, W., Wang, R., Lee, H., & Yu, M. (2008). Soy intake and breast cancer risk in Singapore Chinese Health Study. British Journal of Cancer, 99(1), 196-200.
    Xiao, C. W. (2008). Health effects of soy protein and isoflavones in humans. The Journal of nutrition, 138(6), 1244S-1249S.
    Zafar, A., Singh, S., & Naseem, I. (2017). Cytotoxic activity of soy phytoestrogen coumestrol against human breast cancer MCF-7 cells: Insights into the molecular mechanism. Food and Chemical Toxicology, 99, 149-161.
    Zaheer, K., & Humayoun Akhtar, M. (2017). An updated review of dietary isoflavones: nutrition, processing, bioavailability and impacts on human health. Critical reviews in food science and nutrition, 57(6), 1280-1293.
    Zhang, B., Su, J.-P., Bai, Y., Li, J., & Liu, Y.-H. (2015). Inhibitory effects of O-methylated isoflavone glycitein on human breast cancer SKBR-3 cells. International journal of clinical and experimental pathology, 8(7), 7809.
    Zhang, F. F., Haslam, D. E., Terry, M. B., Knight, J. A., Andrulis, I. L., Daly, M. B., Buys, S. S., John, E. M. (2017). Dietary isoflavone intake and all‐cause mortality in breast cancer survivors: The Breast Cancer Family Registry. Cancer, 123(11), 2070-2079.
    Aidoo, A., Bishop, M. E., Shelton, S. D., Lyn-Cook, L. E., Chen, T., & Manjanatha, M. G. (2005). Effects of daidzein, genistein, and 17β-estradiol on 7, 12-dimethylbenz [a] anthracene-induced mutagenicity and uterine dysplasia in ovariectomized rats. Nutrition and cancer, 53(1), 82-90.
    Allred, C. D., Allred, K. F., Ju, Y. H., Clausen, L. M., Doerge, D. R., Schantz, S. L., . . . Helferich, W. G. (2004). Dietary genistein results in larger MNU-induced, estrogen-dependent mammary tumors following ovariectomy of Sprague–Dawley rats. Carcinogenesis, 25(2), 211-218.
    Allred, C. D., Allred, K. F., Ju, Y. H., Goeppinger, T. S., Doerge, D. R., & Helferich, W. G. (2004). Soy processing influences growth of estrogen-dependent breast cancer tumors. Carcinogenesis, 25(9), 1649-1657.
    Allred, C. D., Allred, K. F., Ju, Y. H., Virant, S. M., & Helferich, W. G. (2001). Soy diets containing varying amounts of genistein stimulate growth of estrogen-dependent (MCF-7) tumors in a dose-dependent manner. Cancer research, 61(13), 5045-5050.
    Allred, C. D., Ju, Y. H., Allred, K. F., Chang, J., & Helferich, W. G. (2001). Dietary genistin stimulates growth of estrogen-dependent breast cancer tumors similar to that observed with genistein. Carcinogenesis, 22(10), 1667-1673.
    Anastasius, N., Boston, S., Lacey, M., Storing, N., & Whitehead, S. A. (2009). Evidence that low-dose, long-term genistein treatment inhibits oestradiol-stimulated growth in MCF-7 cells by down-regulation of the PI3-kinase/Akt signalling pathway. The Journal of steroid biochemistry and molecular biology, 116(1), 50-55.
    Andrade, J. E., Ju, Y. H., Baker, C., Doerge, D. R., & Helferich, W. G. (2015). Long‐term exposure to dietary sources of genistein induces estrogen‐independence in the human breast cancer (MCF‐7) xenograft model. Molecular nutrition & food research, 59(3), 413-423.
    Bernard-Gallon, D. J., Satih, S., Chalabi, N., Rabiau, N., Bosviel, R., Fontana, L., & Bignon, Y.-J. (2010). Phytoestrogens regulate the expression of genes involved in different biological processes in BRCA2 knocked down MCF-7, MDA-MB-231 and MCF-10a cell lines. Oncology reports, 23(3), 647-653.
    Betancourt, A. M., Wang, J., Jenkins, S., Mobley, J., Russo, J., & Lamartiniere, C. A. (2012). Altered carcinogenesis and proteome in mammary glands of rats after prepubertal exposures to the hormonally active chemicals bisphenol a and genistein. The Journal of nutrition, 142(7), 1382S-1388S.
    Bosviel, R., Dumollard, E., Déchelotte, P., Bignon, Y.-J., & Bernard-Gallon, D. (2012). Can soy phytoestrogens decrease DNA methylation in BRCA1 and BRCA2 oncosuppressor genes in breast cancer? Omics: a journal of integrative biology, 16(5), 235-244.
    Bosviel, R., Durif, J., Déchelotte, P., Bignon, Y.-J., & Bernard-Gallon, D. (2012). Epigenetic modulation of BRCA1 and BRCA2 gene expression by equol in breast cancer cell lines. British Journal of Nutrition, 108(7), 1187-1193.
    Boucher, B. A., Cotterchio, M., Anderson, L. N., Kreiger, N., Kirsh, V. A., & Thompson, L. U. (2013). Use of isoflavone supplements is associated with reduced postmenopausal breast cancer risk. International journal of cancer, 132(6), 1439-1450.
    Boué, S. M., Tilghman, S. L., Elliott, S., Zimmerman, M. C., Williams, K., Payton-Stewart, F., . . . Carter-Wientjes, C. H. (2009). Identification of the potent phytoestrogen glycinol in elicited soybean (Glycine max). Endocrinology, 150(5), 2446-2453.
    Bratton, M. R., Martin, E. C., Elliott, S., Rhodes, L. V., Collins-Burow, B. M., McLachlan, J. A., . . . Burow, M. E. (2015). Glyceollin, a novel regulator of mTOR/p70S6 in estrogen receptor positive breast cancer. The Journal of steroid biochemistry and molecular biology, 150, 17-23.
    Brown, N. M., Belles, C. A., Lindley, S. L., Zimmer-Nechemias, L. D., Zhao, X., Witte, D. P., . . . Setchell, K. D. (2010). The chemopreventive action of equol enantiomers in a chemically induced animal model of breast cancer. Carcinogenesis, 31(5), 886-893.
    Burow, M. E., Boue, S. M., Collins-Burow, B. M., Melnik, L. I., Duong, B. N., Carter-Wientjes, C. H., . . . McLachlan, J. A. (2001). Phytochemical glyceollins, isolated from soy, mediate antihormonal effects through estrogen receptor α and β. The Journal of Clinical Endocrinology & Metabolism, 86(4), 1750-1758.
    Cabanes, A., Wang, M., Olivo, S., DeAssis, S., Gustafsson, J.-Å., Khan, G., & Hilakivi-Clarke, L. (2004). Prepubertal estradiol and genistein exposures up-regulate BRCA1 mRNA and reduce mammary tumorigenesis. Carcinogenesis, 25(5), 741-748.
    Cappelletti, V., Miodini, P., Di Fronzo, G., & Daidone, M. G. (2006). Modulation of estrogen receptor-β isoforms by phytoestrogens in breast cancer cells. International journal of oncology, 28(5), 1185-1191.
    Carreau, C., Flouriot, G., Bennetau‐Pelissero, C., & Potier, M. (2009). Respective contribution exerted by AF‐1 and AF‐2 transactivation functions in estrogen receptor α induced transcriptional activity by isoflavones and equol: Consequence on breast cancer cell proliferation. Molecular nutrition & food research, 53(5), 652-658.
    Chan, Y. S., Zhang, Y., & Ng, T. B. (2013). Brown kidney bean Bowman–Birk trypsin inhibitor is heat and pH stable and exhibits anti-proliferative activity. Applied biochemistry and biotechnology, 169(4), 1306-1314.
    Chang, Y.-J., Hou, Y.-C., Chen, L.-J., Wu, J.-H., Wu, C.-C., Chang, Y.-J., & Chung, K.-P. (2017). Is vegetarian diet associated with a lower risk of breast cancer in Taiwanese women? BMC public health, 17(1), 800.
    Charalambous, C., Pitta, C. A., & Constantinou, A. I. (2013). Equol enhances tamoxifen’s anti-tumor activity by induction of caspase-mediated apoptosis in MCF-7 breast cancer cells. BMC cancer, 13(1), 238.
    Chen, J., Duan, Y., Zhang, X., Ye, Y., Ge, B., & Chen, J. (2015). Genistein induces apoptosis by the inactivation of the IGF-1R/p-Akt signaling pathway in MCF-7 human breast cancer cells. Food Funct, 6(3), 995-1000.
    Chen, W.-F., Huang, M.-H., Tzang, C.-H., Yang, M., & Wong, M.-S. (2003). Inhibitory actions of genistein in human breast cancer (MCF-7) cells. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1638(2), 187-196.
    Chen, W.-F., & Wong, M.-S. (2004). Genistein enhances insulin-like growth factor signaling pathway in human breast cancer (MCF-7) cells. The Journal of Clinical Endocrinology & Metabolism, 89(5), 2351-2359.
    Chen, Y.-W., Huang, S.-C., Lin-Shiau, S.-Y., & Lin, J.-K. (2005). Bowman–Birk inhibitor abates proteasome function and suppresses the proliferation of MCF7 breast cancer cells through accumulation of MAP kinase phosphatase-1. Carcinogenesis, 26(7), 1296-1306.
    Chiesa, G., Rigamonti, E., Lovati, M. R., Disconzi, E., Soldati, S., Sacco, M. G., Vezzoni, P., Arnoldi, A., Locati, D. (2008). Reduced mammary tumor progression in a transgenic mouse model fed an isoflavone‐poor soy protein concentrate. Molecular nutrition & food research, 52(10), 1121-1129.
    Cho, Y., Kim, J., Park, K., Lim, S., Shin, A., Sung, M., & Ro, J. (2010). Effect of dietary soy intake on breast cancer risk according to menopause and hormone receptor status. European journal of clinical nutrition, 64(9), 924-932.
    Choi, E. J., Ahn, W. S., & Bae, S. M. (2009). Equol induces apoptosis through cytochrome c-mediated caspases cascade in human breast cancer MDA-MB-453 cells. Chemico-biological interactions, 177(1), 7-11.
    Choi, E. J., & Kim, T. (2008). Equol induced apoptosis via cell cycle arrest in human breast cancer MDA-MB-453 but not MCF-7 cells. Molecular medicine reports, 1(2), 239-244.
    Constantinou, A. I., White, B. E., Tonetti, D., Yang, Y., Liang, W., Li, W., & Van Breemen, R. B. (2005). The soy isoflavone daidzein improves the capacity of tamoxifen to prevent mammary tumours. European Journal of Cancer, 41(4), 647-654.
    da Costa Souza, L., Camargo, R., Demasi, M., Santana, J. M., de Sa, C. M., & de Freitas, S. M. (2014). Effects of an anticarcinogenic Bowman-Birk protease inhibitor on purified 20S proteasome and MCF-7 breast cancer cells. PLoS One, 9(1), e86600.
    Dave, B., Eason, R. R., Till, S. R., Geng, Y., Velarde, M. C., Badger, T. M., & Simmen, R. C. (2005). The soy isoflavone genistein promotes apoptosis in mammary epithelial cells by inducing the tumor suppressor PTEN. Carcinogenesis, 26(10), 1793-1803.
    de la Parra, C., Castillo-Pichardo, L., Cruz-Collazo, A., Cubano, L., Redis, R., Calin, G. A., & Dharmawardhane, S. (2016). Soy isoflavone genistein-mediated downregulation of miR-155 contributes to the anticancer effects of genistein. Nutrition and cancer, 68(1), 154-164.
    de la Parra, C., Otero-Franqui, E., Martinez-Montemayor, M., & Dharmawardhane, S. (2012). The soy isoflavone equol may increase cancer malignancy via up-regulation of eukaryotic protein synthesis initiation factor eIF4G. Journal of Biological Chemistry, 287(50), 41640-41650.
    Dewi, F. N., Wood, C. E., Willson, C. J., Register, T. C., Lees, C. J., Howard, T. D., Huang, Z., Murphy, S. K., Tooze, J. A., Chou, J. W., Miller, L. D., Cline, J. M. (2016). Effects of pubertal exposure to dietary soy on estrogen receptor activity in the breast of cynomolgus macaques. Cancer Prevention Research, 9(5), 385-395.
    Du, X., Beloussow, K., & Shen, W.-C. (2001). Bowman-Birk protease inhibitor and its palmitic acid conjugate prevent 7, 12-dimethylbenz [a] anthracene-induced transformation in cultured mouse mammary glands. Cancer letters, 164(2), 135-141.
    Dutta, S., Kharkar, P. S., Sahu, N. U., & Khanna, A. (2017). Molecular docking prediction and in vitro studies elucidate anti-cancer activity of phytoestrogens. Life sciences, 185, 73-84.
    Fan, P., Fan, S., Wang, H., Mao, J., Shi, Y., Ibrahim, M. M., Ma, W., Yu, X., Hou, Z., Wang, B., Li, L. (2013). Genistein decreases the breast cancer stem-like cell population through Hedgehog pathway. Stem cell research & therapy, 4(6), 146.
    Fan, S., Meng, Q., Auborn, K., Carter, T., & Rosen, E. (2006). BRCA1 and BRCA2 as molecular targets for phytochemicals indole-3-carbinol and genistein in breast and prostate cancer cells. British journal of cancer, 94(3), 407.
    Fang, E. F., Wong, J. H., & Ng, T. B. (2010). Thermostable Kunitz trypsin inhibitor with cytokine inducing, antitumor and HIV-1 reverse transcriptase inhibitory activities from Korean large black soybeans. Journal of bioscience and bioengineering, 109(3), 211-217.
    Fang, Y., Zhang, Q., Wang, X., Yang, X., Wang, X., Huang, Z., Jiao, Y., Wang, J. (2016). Quantitative phosphoproteomics reveals genistein as a modulator of cell cycle and DNA damage response pathways in triple-negative breast cancer cells. International journal of oncology, 48(3), 1016-1028.
    Farina, H. G., Pomies, M., Alonso, D. F., & Gomez, D. E. (2006). Antitumor and antiangiogenic activity of soy isoflavone genistein in mouse models of melanoma and breast cancer. Oncology reports, 16(4), 885-891.
    Gaete, L., Tchernitchin, A. N., Bustamante, R., Villena, J., Lemus, I., Gidekel, M., Cabrera, G., Astorga, P. (2012). Daidzein–estrogen interaction in the rat uterus and its effect on human breast cancer cell growth. Journal of medicinal food, 15(12), 1081-1090.
    Galvez, A. F., & Benito, O. (1999). A soybean cDNA encoding a chromatin-binding peptide inhibits mitosis of mammalian cells. Nature Biotechnology, 17(5), 495-500.

    Gong, P., Madak-Erdogan, Z., Flaws, J. A., Shapiro, D. J., Katzenellenbogen, J. A., & Katzenellenbogen, B. S. (2016). Estrogen receptor-α and aryl hydrocarbon receptor involvement in the actions of botanical estrogens in target cells. Molecular and cellular endocrinology, 437, 190-200.
    Guha, N., Kwan, M. L., Quesenberry, C. P., Weltzien, E. K., Castillo, A. L., & Caan, B. J. (2009). Soy isoflavones and risk of cancer recurrence in a cohort of breast cancer survivors: the Life After Cancer Epidemiology study. Breast cancer research and treatment, 118(2), 395-405.
    Guo, X., Cai, Q., Bao, P., Wu, J., Wen, W., Ye, F., Zheng, W., Zheng, Y., Shu, X. O. (2016). Long‐term soy consumption and tumor tissue MicroRNA and gene expression in triple‐negative breast cancer. Cancer, 122(16), 2544-2551.
    Hamdy, S. M., Latif, A. K. M. A., Drees, E. A., & Soliman, S. M. (2012). Prevention of rat breast cancer by genistin and selenium. Toxicology and industrial health, 28(8), 746-757.
    Hernández‐Ledesma, B., Hsieh, C. C., & de Lumen, B. O. (2011). Relationship between lunasin's sequence and its inhibitory activity of histones H3 and H4 acetylation. Molecular nutrition & food research, 55(7), 989-998.
    Hess-Wilson, J., Boldison, J., Weaver, K., & Knudsen, K. (2006). Xenoestrogen action in breast cancer: impact on ER-dependent transcription and mitogenesis. Breast cancer research and treatment, 96(3), 279-292.
    Hewitt, A. L., & Singletary, K. W. (2003). Soy extract inhibits mammary adenocarcinoma growth in a syngeneic mouse model. Cancer letters, 192(2), 133-143.
    Hirose, K., Imaeda, N., Tokudome, Y., Goto, C., Wakai, K., Matsuo, K., Ito, H., Toyama, T., Iwata, H., Tokudome, S., Tajima, K. (2005). Soybean products and reduction of breast cancer risk: a case–control study in Japan. British journal of cancer, 93(1), 15.
    Hirsch, K., Atzmon, A., Danilenko, M., Levy, J., & Sharoni, Y. (2007). Lycopene and other carotenoids inhibit estrogenic activity of 17β-estradiol and genistein in cancer cells. Breast cancer research and treatment, 104(2), 221.
    Ho, V. S., & Ng, T. (2008). A Bowman‐Birk trypsin inhibitor with antiproliferative activity from Hokkaido large black soybeans. Journal of Peptide Science, 14(3), 278-282.
    Hsieh, C.-C., Hernández-Ledesma, B., & Ben, O. (2010). Lunasin, a novel seed peptide, sensitizes human breast cancer MDA-MB-231 cells to aspirin-arrested cell cycle and induced apoptosis. Chemico-Biological Interactions, 186(2), 127-134.
    Hsieh, C.-C., Hernández-Ledesma, B., Jeong, H. J., Park, J. H., & Ben, O. (2010). Complementary roles in cancer prevention: protease inhibitor makes the cancer preventive peptide lunasin bioavailable. PloS one, 5(1), e8890.

    Imhof, M., Molzer, S., & Imhof, M. (2008). Effects of soy isoflavones on 17β-estradiol-induced proliferation of MCF-7 breast cancer cells. Toxicology in vitro, 22(6), 1452-1460.
    Jaskulski, S., Jung, A. Y., Rudolph, A., Johnson, T., Thöne, K., Herpel, E., Sinn, P., Chang‐Claude, J. (2017). Genistein and enterolactone in relation to Ki‐67 expression and HER2 status in postmenopausal breast cancer patients. Molecular nutrition & food research.
    Jawaid, K., Crane, S. R., Nowers, J. L., Lacey, M., & Whitehead, S. A. (2010). Long-term genistein treatment of MCF-7 cells decreases acetylated histone 3 expression and alters growth responses to mitogens and histone deacetylase inhibitors. The Journal of steroid biochemistry and molecular biology, 120(4), 164-171.
    Jeong, H. J., Lam, Y., & de Lumen, B. O. (2002). Barley lunasin suppresses ras-induced colony formation and inhibits core histone acetylation in mammalian cells. Journal of agricultural and food chemistry, 50(21), 5903-5908.
    Jeong, H. J., Park, J. H., Lam, Y., & de Lumen, B. O. (2003). Characterization of lunasin isolated from soybean. Journal of agricultural and food chemistry, 51(27), 7901-7906.
    Jiang, Q., Pan, Y., Cheng, Y., Li, H., Liu, D., & Li, H. (2016). Lunasin suppresses the migration and invasion of breast cancer cells by inhibiting matrix metalloproteinase-2/-9 via the FAK/Akt/ERK and NF-κB signaling pathways. Oncology reports, 36(1), 253-262.
    Jiang, X., Patterson, N. M., Ling, Y., Xie, J., Helferich, W. G., & Shapiro, D. J. (2008). Low concentrations of the soy phytoestrogen genistein induce proteinase inhibitor 9 and block killing of breast cancer cells by immune cells. Endocrinology, 149(11), 5366-5373.
    Jin, S., Zhang, Q., Kang, X., Wang, J., & Zhao, W. (2009). Daidzein induces MCF-7 breast cancer cell apoptosis via the mitochondrial pathway. Annals of Oncology, 21(2), 263-268.
    Jin, Z., & MacDonald, R. S. (2002). Soy isoflavones increase latency of spontaneous mammary tumors in mice. The Journal of nutrition, 132(10), 3186-3190.
    Joanitti, G. A., Azevedo, R. B., & Freitas, S. M. (2010). Apoptosis and lysosome membrane permeabilization induction on breast cancer cells by an anticarcinogenic Bowman–Birk protease inhibitor from Vigna unguiculata seeds. Cancer letters, 293(1), 73-81.
    Johnson, K. A., Vemuri, S., Alsahafi, S., Castillo, R., & Cheriyath, V. (2016). Glycone-rich Soy Isoflavone Extracts Promote Estrogen Receptor Positive Breast Cancer Cell Growth. Nutrition and cancer, 68(4), 622-633.
    Ju, Y. H., Allred, C. D., Allred, K. F., Karko, K. L., Doerge, D. R., & Helferich, W. G. (2001). Physiological concentrations of dietary genistein dose-dependently stimulate growth of estrogen-dependent human breast cancer (MCF-7) tumors implanted in athymic nude mice. The Journal of nutrition, 131(11), 2957-2962.
    Ju, Y. H., Fultz, J., Allred, K. F., Doerge, D. R., & Helferich, W. G. (2006). Effects of dietary daidzein and its metabolite, equol, at physiological concentrations on the growth of estrogen-dependent human breast cancer (MCF-7) tumors implanted in ovariectomized athymic mice. Carcinogenesis, 27(4), 856-863.
    Kang, H.-B., Zhang, Y.-F., Yang, J.-D., & Lu, K.-L. (2012). Study on soy isoflavone consumption and risk of breast cancer and survival. Asian Pac J Cancer Prev, 13(3), 995-998.
    Kang, X., Jin, S., & Zhang, Q. (2009). Antitumor and Antiangiogenic Activity of Soy Phytoestrogen on 7, 12‐Dimethylbenz [α] anthracene‐Induced Mammary Tumors Following Ovariectomy in Sprague–Dawley Rats. Journal of food science, 74(7).
    Kang, X., Zhang, Q., Wang, S., Huang, X., & Jin, S. (2010). Effect of soy isoflavones on breast cancer recurrence and death for patients receiving adjuvant endocrine therapy. Canadian Medical Association Journal, 182(17), 1857-1862.
    Katdare, M., Osborne, M., & Telang, N. T. (2002). Soy isoflavone genistein modulates cell cycle progression and induces apoptosis in HER-2/neu oncogene expressing human breast epithelial cells. International journal of oncology, 21(4), 809-815.
    Kaushik, S., Shyam, H., Sharma, R., & Balapure, A. K. (2016). Genistein synergizes centchroman action in human breast cancer cells. Indian journal of pharmacology, 48(6), 637.
    Kazi, A., Daniel, K. G., Smith, D. M., Kumar, N. B., & Dou, Q. P. (2003). Inhibition of the proteasome activity, a novel mechanism associated with the tumor cell apoptosis-inducing ability of genistein. Biochemical pharmacology, 66(6), 965-976.
    Khupse, R. S., Sarver, J. G., Trendel, J. A., Bearss, N. R., Reese, M. D., Wiese, T. E., Boue, S. M., Burow, M. E., Cleveland, T. E., Bhatnagar, D., Erhardt, P. W. (2011). Biomimetic syntheses and antiproliferative activities of racemic, natural (−), and unnnatural (+) glyceollin I. Journal of medicinal chemistry, 54(10), 3506-3523.
    Kijkuokool, P., Parhar, I. S., & Malaivijitnond, S. (2006). Genistein enhances N-nitrosomethylurea-induced rat mammary tumorigenesis. Cancer letters, 242(1), 53-59.
    Kim, H.-A., Jeong, K.-S., & Kim, Y. K. (2008). Soy extract is more potent than genistein on tumor growth inhibition. Anticancer research, 28(5A), 2837-2841.
    King‐Batoon, A., Leszczynska, J. M., & Klein, C. B. (2008). Modulation of gene methylation by genistein or lycopene in breast cancer cells. Environmental and molecular mutagenesis, 49(1), 36-45.
    Koh, W.-P., Van Den Berg, D., Jin, A., Wang, R., Yuan, J.-M., & Mimi, C. Y. (2011). Combined effects of MDM2 SNP309 and TP53 R72P polymorphisms, and soy isoflavones on breast cancer risk among Chinese women in Singapore. Breast cancer research and treatment, 130(3), 1011-1019.

    Koo, J., Cabarcas-Petroski, S., Petrie, J. L., Diette, N., White, R. J., & Schramm, L. (2015). Induction of proto-oncogene BRF2 in breast cancer cells by the dietary soybean isoflavone daidzein. BMC cancer, 15(1), 905.
    Korde, L. A., Wu, A. H., Fears, T., Nomura, A. M., West, D. W., Kolonel, L. N., Pike, M.C., Hoover, R. N., Ziegler, R. G. (2009). Childhood soy intake and breast cancer risk in Asian American women. Cancer Epidemiology and Prevention Biomarkers, 18(4), 1050-1059.
    Lanza, A., Tava, A., Catalano, M., Ragona, L., Singuaroli, I., Robustelli della Cuna, F. S., & Robustelli della Cuna, G. (2004). Effects of the Medicago scutellata trypsin inhibitor (MsTI) on cisplatin-induced cytotoxicity in human breast and cervical cancer cells. Anticancer Res, 24(1), 227-233.
    Lattrich, C., Lubig, J., Springwald, A., Goerse, R., Ortmann, O., & Treeck, O. (2011). Additive effects of trastuzumab and genistein on human breast cancer cells. Anti-cancer drugs, 22(3), 253-261.
    Lavigne, J. A., Takahashi, Y., Chandramouli, G. V., Liu, H., Perkins, S. N., Hursting, S. D., & Wang, T. T. (2008). Concentration-dependent effects of genistein on global gene expression in MCF-7 breast cancer cells: an oligo microarray study. Breast cancer research and treatment, 110(1), 85-98.
    Lecomte, S., Chalmel, F., Ferriere, F., Percevault, F., Plu, N., Saligaut, C., Surel, C., Lelong, M., Efstathiou, T., Pakdel, F. (2017). Glyceollins trigger anti-proliferative effects through estradiol-dependent and independent pathways in breast cancer cells. Cell Communication and Signaling, 15(1), 26.
    Lecomte, S., Lelong, M., Bourgine, G., Efstathiou, T., Saligaut, C., & Pakdel, F. (2017). Assessment of the potential activity of major dietary compounds as selective estrogen receptor modulators in two distinct cell models for proliferation and differentiation. Toxicology and applied pharmacology, 325, 61-70.
    Lee, S.-A., Shu, X.-O., Li, H., Yang, G., Cai, H., Wen, W., Ji, B. T., Gao, J., Gao, Y. T., Zheng, W. (2009). Adolescent and adult soy food intake and breast cancer risk: results from the Shanghai Women's Health Study. The American journal of clinical nutrition, 89(6), 1920-1926.
    Lee, W. Y., Huang, S. C., Tzeng, C. C., Chang, T. L., & Hsu, K. F. (2007). Alterations of metastasis-related genes identified using an oligonucleotide microarray of genistein-treated HCC1395 breast cancer cells. Nutr Cancer, 58(2), 239-246.
    Lee, Y.-H., Yuk, H. J., Park, K.-H., & Bae, Y.-S. (2013). Coumestrol induces senescence through protein kinase CKII inhibition-mediated reactive oxygen species production in human breast cancer and colon cancer cells. Food chemistry, 141(1), 381-388.

    Li, Y., Ahmed, F., Ali, S., Philip, P. A., Kucuk, O., & Sarkar, F. H. (2005). Inactivation of nuclear factor κB by soy isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells. Cancer research, 65(15), 6934-6942.
    Li, Y., Meeran, S. M., Patel, S. N., Chen, H., Hardy, T. M., & Tollefsbol, T. O. (2013). Epigenetic reactivation of estrogen receptor-α (ERα) by genistein enhances hormonal therapy sensitivity in ERα-negative breast cancer. Molecular Cancer, 12, 9-9. doi:10.1186/1476-4598-12-9
    Liao, C.-H., Pan, S.-L., Guh, J.-H., & Teng, C.-M. (2004). Genistein inversely affects tubulin-binding agent-induced apoptosis in human breast cancer cells. Biochemical pharmacology, 67(11), 2031-2038.
    Limer, J. L., Parkes, A. T., & Speirs, V. (2006). Differential response to phytoestrogens in endocrine sensitive and resistant breast cancer cells in vitro. International journal of cancer, 119(3), 515-521.
    Lin, H.-M., Moon, B.-K., Yu, F., & Kim, H.-R. C. (2000). Galectin-3 mediates genistein-induced G2/M arrest and inhibits apoptosis. Carcinogenesis, 21(11), 1941-1945.
    Lin, P., Ye, X., & Ng, T. (2008). Purification of melibiose‐binding lectins from two cultivars of Chinese black soybeans. Acta biochimica et biophysica Sinica, 40(12), 1029-1038.
    Linseisen, J., Piller, R., Hermann, S., & Chang‐Claude, J. (2004). Dietary phytoestrogen intake and premenopausal breast cancer risk in a German case‐control study. International journal of cancer, 110(2), 284-290.
    Liu, H., Du, J., Hu, C., Qi, H., Wang, X., Wang, S., Liu, Q., Li, Z. (2010). Delayed activation of extracellular-signal-regulated kinase 1/2 is involved in genistein-and equol-induced cell proliferation and estrogen-receptor-α-mediated transcription in MCF-7 breast cancer cells. The Journal of nutritional biochemistry, 21(5), 390-396.
    Liu, H., Hu, C., Wu, X., & Li, Z. (2014). Equol elicits estrogenic activities via PI3K/akt pathway in the estrogen receptor-positive MCF-7 cells. Molecular & Cellular Toxicology, 10(3), 285-291.
    Liu, X., Suzuki, N., Laxmi, Y. S., Okamoto, Y., & Shibutani, S. (2012). Anti-breast cancer potential of daidzein in rodents. Life sciences, 91(11-12), 415-419.
    Lucki, N. C., & Sewer, M. B. (2011). Genistein stimulates MCF-7 breast cancer cell growth by inducing acid ceramidase (ASAH1) gene expression. Journal of Biological Chemistry, 286(22), 19399-19409.
    Ma, D., Zhang, Y., Yang, T., Xue, Y., & Wang, P. (2014). Isoflavone intake inhibits the development of 7, 12-dimethylbenz (a) anthracene (DMBA)-induced mammary tumors in normal and ovariectomized rats. Journal of clinical biochemistry and nutrition, 54(1), 31-38.

    Magee, P. J., Allsopp, P., Samaletdin, A., & Rowland, I. R. (2014). Daidzein, R-(+) equol and S-(−) equol inhibit the invasion of MDA-MB-231 breast cancer cells potentially via the down-regulation of matrix metalloproteinase-2. European journal of nutrition, 53(1), 345-350.
    Magee, P. J., McGlynn, H., & Rowland, I. R. (2004). Differential effects of isoflavones and lignans on invasiveness of MDA-MB-231 breast cancer cells in vitro. Cancer letters, 208(1), 35-41.
    Magee, P. J., Owusu-Apenten, R., McCann, M. J., Gill, C. I., & Rowland, I. R. (2012). Chickpea (Cicer arietinum) and other plant-derived protease inhibitor concentrates inhibit breast and prostate cancer cell proliferation in vitro. Nutrition and cancer, 64(5), 741-748.
    Mai, Z., Blackburn, G. L., & Zhou, J.-R. (2007). Soy phytochemicals synergistically enhance the preventive effect of tamoxifen on the growth of estrogen-dependent human breast carcinoma in mice. Carcinogenesis, 28(6), 1217-1223.
    Mai, Z., Blackburn, G. L., & Zhou, J. R. (2007). Genistein sensitizes inhibitory effect of tamoxifen on the growth of estrogen receptor‐positive and HER2‐overexpressing human breast cancer cells. Molecular carcinogenesis, 46(7), 534-542.
    Marcela, G.-M., Eva, R.-G., del Carmen, R.-R. M., & Rosalva, M.-E. (2016). Evaluation of the antioxidant and antiproliferative effects of three peptide fractions of germinated soybeans on breast and cervical cancer cell lines. Plant Foods for Human Nutrition, 71(4), 368-374.
    Marik, R., Allu, M., Anchoori, R., Stearns, V., Umbricht, C. B., & Khan, S. (2011). Potent genistein derivatives as inhibitors of estrogen receptor alpha-positive breast cancer. Cancer biology & therapy, 11(10), 883-892.
    Martínez-Montemayor, M. M., Otero-Franqui, E., Martinez, J., De La Mota-Peynado, A., Cubano, L. A., & Dharmawardhane, S. (2010). Individual and combined soy isoflavones exert differential effects on metastatic cancer progression. Clinical & experimental metastasis, 27(7), 465-480.
    McLaughlin, J. M., Olivo-Marston, S., Vitolins, M. Z., Bittoni, M., Reeves, K. W., Degraffinreid, C. R., Schwartz, S. J., Clinton, S. K., Paskett, E. D. (2011). Effects of tomato-and soy-rich diets on the IGF-I hormonal network: a crossover study of postmenopausal women at high risk for breast cancer. Cancer Prevention Research, 4(5), 702-710.
    Medeiros, P. S., Batista de Carvalho, A. L., Ruano, C., Otero, J. C., & Marques, M. P. (2016). Raman microspectroscopy for probing the impact of a dietary antioxidant on human breast cancer cells. Food Funct, 7(6), 2800-2810.

    Mehdad, A., Brumana, G., Souza, A., Barbosa, J., Ventura, M., & De Freitas, S. (2016). A Bowman–Birk inhibitor induces apoptosis in human breast adenocarcinoma through mitochondrial impairment and oxidative damage following proteasome 20S inhibition. Cell death discovery, 2.
    Möller, F. J., Pemp, D., Soukup, S. T., Wende, K., Zhang, X., Zierau, O., Muders, M. H., Bosland, M. C., Kulling, S. E., Lehmann, L., Vollmer, G. (2016). Soy isoflavone exposure through all life stages accelerates 17β-estradiol-induced mammary tumor onset and growth, yet reduces tumor burden, in ACI rats. Archives of toxicology, 90(8), 1907-1916.
    Montales, M. T. E., Rahal, O. M., Kang, J., Rogers, T. J., Prior, R. L., Wu, X., & Simmen, R. C. (2012). Repression of mammosphere formation of human breast cancer cells by soy isoflavone genistein and blueberry polyphenolic acids suggests diet-mediated targeting of cancer stem-like/progenitor cells. Carcinogenesis, 33(3), 652-660.
    Montales, M. T. E., Rahal, O. M., Nakatani, H., Matsuda, T., & Simmen, R. C. (2013). Repression of mammary adipogenesis by genistein limits mammosphere formation of human MCF-7 cells. Journal of Endocrinology, 218(1), 135-149.
    Morito, K., Hirose, T., Kinjo, J., Hirakawa, T., Okawa, M., Nohara, T., Ogawa, S., Inoue, S., Muramatsu, M., Masamune, Y. (2001). Interaction of phytoestrogens with estrogen receptors α and β. Biological and Pharmaceutical Bulletin, 24(4), 351-356.
    Moy, L. Y., & Billings, P. C. (1994). A proteolytic activity in a human breast cancer cell line which is inhibited by the anticarcinogenic Bowman-Birk protease inhibitor. Cancer letters, 85(2), 205-210.
    Murata, M., Midorikawa, K., Koh, M., Umezawa, K., & Kawanishi, S. (2004). Genistein and daidzein induce cell proliferation and their metabolites cause oxidative DNA damage in relation to isoflavone-induced cancer of estrogen-sensitive organs. Biochemistry, 43(9), 2569-2577.
    Murata, M., Midorikawa, K., Koh, M., Umezawa, K., & Kawanishi, S. (2004). Genistein and daidzein induce cell proliferation and their metabolites cause oxidative DNA damage in relation to isoflavone-induced cancer of estrogen-sensitive organs. Biochemistry, 43(9), 2569-2577.
    Nadal-Serrano, M., Pons, D. G., Sastre-Serra, J., del Mar Blanquer-Rosselló, M., Roca, P., & Oliver, J. (2013). Genistein modulates oxidative stress in breast cancer cell lines according to ERα/ERβ ratio: effects on mitochondrial functionality, sirtuins, uncoupling protein 2 and antioxidant enzymes. The international journal of biochemistry & cell biology, 45(9), 2045-2051.

    Nakagawa, H., Yamamoto, D., Kiyozuka, Y., Tsuta, K., Uemura, Y., Hioki, K., Tsutsui, Y., Tsubura, A. (2000). Effects of genistein and synergistic action in combination with eicosapentaenoic acid on the growth of breast cancer cell lines. Journal of cancer research and clinical oncology, 126(8), 448-454.
    Nechuta, S. J., Caan, B. J., Chen, W. Y., Lu, W., Chen, Z., Kwan, M. L., Flatt, S. W., Zheng, Y., Zheng, W., Pierce, J. P., Shu, X. O. (2012). Soy food intake after diagnosis of breast cancer and survival: an in-depth analysis of combined evidence from cohort studies of US and Chinese women. The American journal of clinical nutrition, 96(1), 123-132.
    Nguyen, D. T., Hernandez-Montes, E., Vauzour, D., Schönthal, A. H., Rice-Evans, C., Cadenas, E., & Spencer, J. P. (2006). The intracellular genistein metabolite 5, 7, 3′, 4′-tetrahydroxyisoflavone mediates G2-M cell cycle arrest in cancer cells via modulation of the p38 signaling pathway. Free Radical Biology and Medicine, 41(8), 1225-1239.
    Ono, M., Ejima, K., Higuchi, T., Takeshima, M., Wakimoto, R., & Nakano, S. (2017). Equol Enhances Apoptosis-inducing Activity of Genistein by Increasing Bax/Bcl-xL Expression Ratio in MCF-7 Human Breast Cancer Cells. Nutr Cancer, 69(8), 1300-1307.
    Ono, M., Koga, T., Ueo, H., & Nakano, S. (2012). Effects of dietary genistein on hormone-dependent rat mammary carcinogenesis induced by ethyl methanesulphonate. Nutrition and cancer, 64(8), 1204-1210.
    Pabona, J. M. P., Dave, B., Su, Y., Montales, M. T. E., Ben, O., De Mejia, E. G., Rahal, O, M., Simmen, R. C. (2013). The soybean peptide lunasin promotes apoptosis of mammary epithelial cells via induction of tumor suppressor PTEN: similarities and distinct actions from soy isoflavone genistein. Genes & nutrition, 8(1), 79-90.
    Palavalli, M. H., Natarajan, S. S., Wang, T. T., & Krishnan, H. B. (2012). Imbibition of soybean seeds in warm water results in the release of copious amounts of Bowman–Birk protease inhibitor, a putative anticarcinogenic agent. Journal of agricultural and food chemistry, 60(12), 3135-3143.
    Pan, H., Zhou, W., He, W., Liu, X., Ding, Q., Ling, L., Zha, X. & Wang, S. (2012). Genistein inhibits MDA-MB-231 triple-negative breast cancer cell growth by inhibiting NF-κB activity via the Notch-1 pathway. International journal of molecular medicine, 30(2), 337-343.
    Park, K., Choi, K., Kim, H., Kim, K., Lee, M. H., Lee, J.-H., & Rim, J. C. K. (2009). Isoflavone-deprived soy peptide suppresses mammary tumorigenesis by inducing apoptosis. Experimental & molecular medicine, 41(6), 371-380.
    Po, L. S., Chen, Z.-y., Tsang, D. S., & Leung, L. K. (2002). Baicalein and genistein display differential actions on estrogen receptor (ER) transactivation and apoptosis in MCF-7 cells. Cancer letters, 187(1), 33-40.

    Pons, D. G., Nadal‐Serrano, M., Blanquer‐Rossello, M., Sastre‐Serra, J., Oliver, J., & Roca, P. (2014). Genistein modulates proliferation and mitochondrial functionality in breast cancer cells depending on ERalpha/ERbeta ratio. Journal of cellular biochemistry, 115(5), 949-958.
    Poschner, S., Maier-Salamon, A., Zehl, M., Wackerlig, J., Dobusch, D., Pachmann, B., Sterlini, K. L., Jäger, W. (2017). The Impacts of Genistein and Daidzein on Estrogen Conjugations in Human Breast Cancer Cells: A Targeted Metabolomics Approach. Frontiers in pharmacology, 8, 699.
    Prietsch, R., Monte, L. d., Da Silva, F., Beira, F., Del Pino, F., Campos, V., Collares, T., Pinto, L. S., Spanevello, R. M., Gamaro, G. D., Braganhol, E. (2014). Genistein induces apoptosis and autophagy in human breast MCF-7 cells by modulating the expression of proapoptotic factors and oxidative stress enzymes. Molecular and cellular biochemistry, 390(1-2), 235-242.
    Rahal, O. M., Machado, H. L., Montales, M. T. E., Pabona, J. M. P., Heard, M. E., Nagarajan, S., & Simmen, R. C. (2013). Dietary suppression of the mammary CD29 hi CD24+ epithelial subpopulation and its cytokine/chemokine transcriptional signatures modifies mammary tumor risk in MMTV-Wnt1 transgenic mice. Stem cell research, 11(3), 1149-1162.
    Rajah, T. T., Du, N., Drews, N., & Cohn, R. (2009). Genistein in the presence of 17beta-estradiol inhibits proliferation of ERbeta breast cancer cells. Pharmacology, 84(2), 68-73. doi:10.1159/000226123
    Rajah, T. T., Peine, K. J., Du, N., Serret, C. A., & Drews, N. R. (2012). Physiological concentrations of genistein and 17β-estradiol inhibit MDA-MB-231 breast cancer cell growth by increasing BAX/BCL-2 and reducing pERK1/2. Anticancer research, 32(4), 1181-1191.
    Reiter, E., Gerster, P., & Jungbauer, A. (2011). Red clover and soy isoflavones—an in vitro safety assessment. Gynecological Endocrinology, 27(12), 1037-1042.
    Rhodes, L. V., Tilghman, S. L., Boue, S. M., Wang, S., Khalili, H., Muir, S. E., Bratton, M. R., Zhang, Q., Wang, G., Burow, M. E., Collins-Burow, B. M. (2012). Glyceollins as novel targeted therapeutic for the treatment of triple-negative breast cancer. Oncology letters, 3(1), 163-171.
    Rowlands, J., Berhow, M., & Badger, T. (2002). Estrogenic and antiproliferative properties of soy sapogenols in human breast cancer cells in vitro. Food and Chemical Toxicology, 40(12), 1767-1774.
    Sahin, K., Tuzcu, M., Sahin, N., Akdemir, F., Ozercan, I., Bayraktar, S., & Kucuk, O. (2011). Inhibitory effects of combination of lycopene and genistein on 7, 12-dimethyl benz (a) anthracene-induced breast cancer in rats. Nutrition and cancer, 63(8), 1279-1286.

    Sakamoto, T., Horiguchi, H., Oguma, E., & Kayama, F. (2010). Effects of diverse dietary phytoestrogens on cell growth, cell cycle and apoptosis in estrogen-receptor-positive breast cancer cells. The Journal of nutritional biochemistry, 21(9), 856-864.
    Sakla, M. S., Shenouda, N. S., Ansell, P. J., MacDonald, R. S., & Lubahn, D. B. (2007). Genistein affects HER2 protein concentration, activation, and promoter regulation in BT-474 human breast cancer cells. Endocrine, 32(1), 69-78.
    Salvo, V. A., Boue, S. M., Fonseca, J. P., Elliott, S., Corbitt, C., Collins-Burow, B. M., Curiel, T. J., Srivastav, S. K., Shih, B. Y., Carter-Wientjes, C., Wood, C. E., Erhardt, P. W., Beckman, B. S., McLachlan, J. A., Cleveland, T. E., Burow, M. E. (2006). Antiestrogenic glyceollins suppress human breast and ovarian carcinoma tumorigenesis. Clinical cancer research, 12(23), 7159-7164.
    Santell, R. C., Kieu, N., & Helferich, W. G. (2000). Genistein inhibits growth of estrogen-independent human breast cancer cells in culture but not in athymic mice. The Journal of nutrition, 130(7), 1665-1669.
    Satih, S., Chalabi, N., Rabiau, N., Bosviel, R., Fontana, L., Bignon, Y.-J., & Bernard-Gallon, D. J. (2010). Gene expression profiling of breast cancer cell lines in response to soy isoflavones using a pangenomic microarray approach. Omics: a journal of integrative biology, 14(3), 231-238.
    Schmidt, S., Michna, H., & Diel, P. (2005). Combinatory effects of phytoestrogens and 17ß-estradiol on proliferation and apoptosis in MCF-7 breast cancer cells. The Journal of steroid biochemistry and molecular biology, 94(5), 445-449.
    Seo, H.-S., DeNardo, D. G., Jacquot, Y., Laïos, I., Vidal, D. S., Zambrana, C. R., Leclercq, G., Brown, P. H. (2006). Stimulatory effect of genistein and apigenin on the growth of breast cancer cells correlates with their ability to activate ER alpha. Breast cancer research and treatment, 99(2), 121-134.
    Seo, H.-S., Ju, J.-h., Jang, K., & Shin, I. (2011). Induction of apoptotic cell death by phytoestrogens by up-regulating the levels of phospho-p53 and p21 in normal and malignant estrogen receptor α–negative breast cells. Nutrition research, 31(2), 139-146.
    Sergeev, I. N. (2004). Genistein induces Ca 2+-mediated, calpain/caspase-12-dependent apoptosis in breast cancer cells. Biochemical and biophysical research communications, 321(2), 462-467.
    Shike, M., Doane, A. S., Russo, L., Cabal, R., Reis-Filho, J. S., Gerald, W., Cody, H., Khanin, R., Bromberg, J., Norton, L. (2014). The effects of soy supplementation on gene expression in breast cancer: a randomized placebo-controlled study. JNCI: Journal of the National Cancer Institute, 106(9).

    Shim, H.-Y., Park, J.-H., Paik, H.-D., Nah, S.-Y., Kim, D. S., & Han, Y. S. (2007). Genistein-induced apoptosis of human breast cancer MCF-7 cells involves calpain–caspase and apoptosis signaling kinase 1–p38 mitogen-activated protein kinase activation cascades. Anti-cancer drugs, 18(6), 649-657.
    Shu, X. O., Zheng, Y., Cai, H., Gu, K., Chen, Z., Zheng, W., & Lu, W. (2009). Soy food intake and breast cancer survival. Jama, 302(22), 2437-2443.
    Singletary, K., Faller, J., Li, J. Y., & Mahungu, S. (2000). Effect of extrusion on isoflavone content and antiproliferative bioactivity of soy/corn mixtures. Journal of agricultural and food chemistry, 48(8), 3566-3571.
    Stocco, B., Toledo, K. A., Fumagalli, H. F., Bianchini, F. J., Fortes, V. S., Fonseca, M. J. V., & Toloi, M. R. T. (2015). Biotransformed soybean extract induces cell death of estrogen-dependent breast cancer cells by modulation of apoptotic proteins. Nutrition and cancer, 67(4), 612-619.
    Taghizadeh, B., Ghavami, L., Nikoofar, A., & Goliaei, B. (2015). Equol as a potent radiosensitizer in estrogen receptor-positive and-negative human breast cancer cell lines. Breast Cancer, 22(4), 382-390.
    Teas, J., Irhimeh, M. R., Druker, S., Hurley, T. G., Hébert, J. R., Savarese, T. M., & Kurzer, M. S. (2011). Serum IGF-1 concentrations change with soy and seaweed supplements in healthy postmenopausal American women. Nutrition and cancer, 63(5), 743-748.
    Thanos, J., Cotterchio, M., Boucher, B. A., Kreiger, N., & Thompson, L. U. (2006). Adolescent dietary phytoestrogen intake and breast cancer risk (Canada). Cancer Causes & Control, 17(10), 1253-1261.
    Tsuboy, M. S., Marcarini, J. C., de Souza, A. O., de Paula, N. A., Dorta, D. J., Mantovani, M. S., & Ribeiro, L. R. (2014). Genistein at maximal physiologic serum levels induces G0/G1 arrest in MCF-7 and HB4a cells, but not apoptosis. Journal of medicinal food, 17(2), 218-225.
    Uifălean, A., Schneider, S., Gierok, P., Ionescu, C., Iuga, C. A., & Lalk, M. (2016). The impact of soy isoflavones on MCF-7 and MDA-MB-231 breast cancer cells using a global metabolomic approach. International journal of molecular sciences, 17(9), 1443.
    Ullah, M. F., Ahmad, A., Zubair, H., Khan, H. Y., Wang, Z., Sarkar, F. H., & Hadi, S. M. (2011). Soy isoflavone genistein induces cell death in breast cancer cells through mobilization of endogenous copper ions and generation of reactive oxygen species. Molecular nutrition & food research, 55(4), 553-559.
    Valentiner, U., Fabian, S., Schumacher, U., & Leathem, A. J. (2003). The influence of dietary lectins on the cell proliferation of human breast cancer cell lines in vitro. Anticancer Res, 23(2b), 1197-1206.

    van Duursen, M. B., Nijmeijer, S., de Morree, E., de Jong, P. C., & van den Berg, M. (2011). Genistein induces breast cancer-associated aromatase and stimulates estrogen-dependent tumor cell growth in in vitro breast cancer model. Toxicology, 289(2), 67-73.
    Vissac-Sabatier, C., Bignon, Y.-J., & Bernard-Gallon, D. J. (2003). Effects of the phytoestrogens genistein and daidzein on BRCA2 tumor suppressor gene expression in breast cell lines. Nutrition and cancer, 45(2), 247-255.
    Wada, K., Nakamura, K., Tamai, Y., Tsuji, M., Kawachi, T., Hori, A., Takeyama, N., Tanabashi, S., Matsushita, S., Tokimitsu, N., Nagata, C. (2013). Soy isoflavone intake and breast cancer risk in Japan: from the Takayama study. International journal of cancer, 133(4), 952-960.
    Wagner, J., Jiang, L., & Lehmann, L. (2008). Phytoestrogens modulate the expression of 17a-estradiol metabolizing enzymes in cultured MCF-7 cells. Advances in experimental medicine and biology, 617, 625-632.
    Wang, D., Ma, Q., Zhang, N., & Qi, D. (2010). Genistein inhibit the proliferation induced by zearalenone in MCF-7 cells. Molecular & Cellular Toxicology, 6(1), 25-31.
    Wang, Q., Li, H., Tao, P., Wang, Y.-P., Yuan, P., Yang, C.-X., Lee, H., Huang, Y. (2011). Soy isoflavones, CYP1A1, CYP1B1, and COMT polymorphisms, and breast cancer: a case–control study in southwestern China. DNA and cell biology, 30(8), 585-595.
    Wang, Q., Liu, L., Li, H., Tao, P., Qi, Y., & Li, J. (2016). Effects of High-Order Interactions among IGFBP-3 Genetic Polymorphisms, Body Mass Index and Soy Isoflavone Intake on Breast Cancer Susceptibility. PloS one, 11(9), e0162970.
    Wang, Q., Wang, Y., Li, J., Yuan, P., Yang, F., & Li, H. (2010). Polymorphic catechol-O-methyltransferase gene, soy isoflavone intake and breast cancer in postmenopausal women: a case-control study. Chin J Cancer, 29(7), 683-688.
    Watson, K. L., Stalker, L., Jones, R. A., & Moorehead, R. A. (2015). High levels of dietary soy decrease mammary tumor latency and increase incidence in MTB-IGFIR transgenic mice. BMC cancer, 15(1), 37.
    Wood, C. E., Clarkson, T. B., Appt, S. E., Franke, A. A., Boue, S. M., Burow, M. E., McCoy, T., Cline, J. M. (2006). Effects of soybean glyceollins and estradiol in postmenopausal female monkeys. Nutrition and cancer, 56(1), 74-81.
    Wu, A., Koh, W., Wang, R., Lee, H., & Yu, M. (2008). Soy intake and breast cancer risk in Singapore Chinese Health Study. British journal of cancer, 99(1), 196-200.
    Wu, A. H., Spicer, D. V., & Pike, M. C. (2012). Soy Isoflavones for Breast Cancer Risk Reduction. Cancer Prevention Research, 5(7), 984-985.
    Wu, A. H., Wan, P., Hankin, J., Tseng, C.-C., Yu, M. C., & Pike, M. C. (2002). Adolescent and adult soy intake and risk of breast cancer in Asian-Americans. Carcinogenesis, 23(9), 1491-1496.
    Wu, Q., Jin, N., Yu, J., Zhao, R., Yu, Z., Qiao, S., Lu, X., Zhang, C. (2009). Effects of soy isoflavone extracts on the growth of estrogen-dependent human breast cancer (MCF-7) tumors implanted in ovariectomized nude mice. Chinese Science Bulletin, 54(1), 72.
    Wu, Q., Yang, Y., Yu, J., & Jin, N. (2012). Soy isoflavone extracts stimulate the growth of nude mouse xenografts bearing estrogen-dependent human breast cancer cells (MCF-7). Journal of biomedical research, 26(1), 44-52.
    Xie, Q., Bai, Q., Zou, L. Y., Zhang, Q. Y., Zhou, Y., Chang, H., Yi, L., Zhu, J. D., Mi, M. T. (2014). Genistein inhibits DNA methylation and increases expression of tumor suppressor genes in human breast cancer cells. Genes Chromosomes Cancer, 53(5), 422-431.
    Yamamoto, S., Sobue, T., Kobayashi, M., Sasaki, S., & Tsugane, S. (2003). Soy, isoflavones, and breast cancer risk in Japan. Journal of the national cancer institute, 95(12), 906-913.
    Yan, L., Li, D., & Yee, J. A. (2002). Dietary supplementation with isolated soy protein reduces metastasis of mammary carcinoma cells in mice. Clinical & experimental metastasis, 19(6), 535.
    Yang, S., Zhou, Q., & Yang, X. (2007). Caspase-3 status is a determinant of the differential responses to genistein between MDA-MB-231 and MCF-7 breast cancer cells. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1773(6), 903-911.
    Yang, X., Belosay, A., Hartman, J. A., Song, H., Zhang, Y., Wang, W., Doerge, D. R., Helferich, W. G. (2015). Dietary soy isoflavones increase metastasis to lungs in an experimental model of breast cancer with bone micro-tumors. Clinical & experimental metastasis, 32(4), 323-333.
    Yuan, B., Cheng, L., Gupta, K., Chiang, H.-C., Gupta, H. B., Sareddy, G. R., . . . Wang, P. (2016). Tyrosine phosphorylation regulates ERβ ubiquitination, protein turnover, and inhibition of breast cancer. Oncotarget, 7(27), 42585.
    Yuan, B., Wang, L., Jin, Y., Zhen, H., Xu, P., Xu, Y., Li, C., Xu, H. (2012). Role of Metabolism in the Effects of Genistein and Its Phase II Conjugates on the Growth of Human Breast Cell Lines. The AAPS Journal, 14(2), 329-344.
    Zafar, A., Singh, S., & Naseem, I. (2017). Cytotoxic activity of soy phytoestrogen coumestrol against human breast cancer MCF-7 cells: Insights into the molecular mechanism. Food and Chemical Toxicology, 99, 149-161.
    Zafar, A., Singh, S., Satija, Y. K., Saluja, D., & Naseem, I. (2018). Deciphering the molecular mechanism underlying anticancer activity of coumestrol in triple-negative breast cancer cells. Toxicology in Vitro, 46, 19-28.
    Zhang, B., Su, J.-P., Bai, Y., Li, J., & Liu, Y.-H. (2015). Inhibitory effects of O-methylated isoflavone glycitein on human breast cancer SKBR-3 cells. International journal of clinical and experimental pathology, 8(7), 7809.
    Zhang, C., Ho, S. C., Lin, F., Cheng, S., Fu, J., & Chen, Y. (2010). Soy product and isoflavone intake and breast cancer risk defined by hormone receptor status. Cancer science, 101(2), 501-507.
    Zhang, E. J., Ng, K. M., & Luo, K. Q. (2007). Extraction and purification of isoflavones from soybeans and characterization of their estrogenic activities. Journal of agricultural and food chemistry, 55(17), 6940-6950.
    Zhang, F. F., Haslam, D. E., Terry, M. B., Knight, J. A., Andrulis, I. L., Daly, M. B., Buys, S. S., John, E. M. (2017). Dietary isoflavone intake and all‐cause mortality in breast cancer survivors: The Breast Cancer Family Registry. Cancer, 123(11), 2070-2079.
    Zhang, G., Han, D., Liu, G., Gao, S., Cai, X., Duan, R., & Feng, X. (2012). Effects of soy isoflavone and endogenous oestrogen on breast cancer in MMTV-erbB2 transgenic mice. Journal of International Medical Research, 40(6), 2073-2082.
    Zhang, L., Wan, X. S., Donahue, J. J., Ware, J. H., & Kennedy, A. R. (1999). Effects of the Bowman-Birk inhibitor on clonogenic survival and cisplatin-or radiation-induced cytotoxicity in human breast, cervical, and head and neck cancer cells. Nutrition and cancer, 33(2), 165-173.
    Zhang, M., Yang, H., & Holman, C. A. J. (2009). Dietary intake of isoflavones and breast cancer risk by estrogen and progesterone receptor status. Breast cancer research and treatment, 118(3), 553-563.
    Zhang, X., Cook, K. L., Warri, A., Cruz, I. M., Rosim, M., Riskin, J., Helferich, W., Doerge, D., Clarke, R., Hilakivi-Clarke, L. (2017). Lifetime genistein intake increases the response of mammary tumors to tamoxifen in rats. Clinical Cancer Research, 23(3), 814-824.
    Zhang, Y.-F., Kang, H.-B., Li, B.-L., & Zhang, R.-M. (2012). Positive effects of soy isoflavone food on survival of breast cancer patients in China. Asian Pacific Journal of Cancer Prevention, 13(2), 479-482.
    Zhao, Q., Zhao, M., Parris, A. B., Xing, Y., & Yang, X. (2016). Genistein targets the cancerous inhibitor of PP2A to induce growth inhibition and apoptosis in breast cancer cells. International journal of oncology, 49(3), 1203-1210.
    Zheng, W.-Y., Nie, S.-P., Li, W.-J., Hu, X.-J., & Xie, M.-Y. (2013). Stimulatory effects of genistein and quercetin on the proliferation of MCF-7 cells. Food Bioscience, 2, 15-23.
    Zhou, J. R., Yu, L., Mai, Z., & Blackburn, G. L. (2004). Combined inhibition of estrogen‐dependent human breast carcinoma by soy and tea bioactive components in mice. International journal of cancer, 108(1), 8-14.
    Zhu, Y.-y., Zhou, L., Jiao, S.-c., & Xu, L.-z. (2011). Relationship between soy food intake and breast cancer in China. Asian Pac J Cancer Prev, 12(11), 2837-2840.
    Zimmermann, M. C., Tilghman, S. L., Boue, S. M., Salvo, V. A., Elliott, S., Williams, K., Skripnikova, E. V., Ashe, H., Payton-Stewart, F., Vanhoy-Rhodes, L., Fonseca, J. P., Corbitt, C., Collins-Burow, B. M., Howell, M. H., Lacey, M., Shih, B. Y., Carter-Wientjes, C., Cleveland, T. E., McLachlan, J. A., Wiese, T. E., Beckman, B. S., Burow, M. E. (2010). Glyceollin I, a novel antiestrogenic phytoalexin isolated from activated soy. Journal of pharmacology and experimental therapeutics, 332(1), 35-45.

    下載圖示
    QR CODE