簡易檢索 / 詳目顯示

研究生: 梁家榮
Chia-Jung Liang
論文名稱: 一、酸輔佐帶官能基環己-2-烯-1-醇分子內環化反應—雜環化合物的合成。二、鹵化銦輔佐烯炔醯胺環化反應。
1.Acid-Promoted Intramolecular Cyclization of Functional Group-Tethered Cyclohex-2-en-1-ols—Synthesis of Heterocycles. 2. Indium Halides-Mediated Cyclization of Enynamides.
指導教授: 葉名倉
Yeh, Ming-Chang
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 711
中文關鍵詞: 螺旋化合物環氧化反應內酯化反應三氯化鐵環丙烷化反應擴環反應六氫吲哚金催化反應克萊森重排反應三鹵化銦炔醯胺化合物胺基茚化合物茚并吡啶化合物
英文關鍵詞: spiro compound, epoxidation, lactonization, iron(III) chloride, cyclopropanation, ring expansion reaction, hexahydroindole, gold(I) catalyzed, Claisen rearrangement, indium(III) halide, ynamide, aminoindene, indeno[2,1-b]pyridine
DOI URL: https://doi.org/10.6345/NTNU202205613
論文種類: 學術論文
相關次數: 點閱:266下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 論文分為四個主題,主要利用布忍斯特酸或路易士酸對有機環氧基醇、環丙烷基醇、烯丙醇及烯炔醯胺官能基進行分子內環化反應,以合成含有雜原子的螺旋雙環化合物或稠環化合物。

    第一章以間氯過氧苯甲酸輔佐3號位上帶有醯胺基、酯基側鍊的環己-2-烯-1-醇化合物,進行一鍋化的環氧化/螺旋雙環內酯化反應。形成帶有鄰位順式雙醇官能基的螺旋雙環內酯化合物。將3號位帶有酯基側鍊的環己-2-烯-1-醇化合物進行環氧化反應,接著將酯基進行水解形成羧酸鹽類後,再進行螺旋雙環內酯化反應,合成出相同的合環產物。證實以醯胺基取代進行合環反應並不會得到螺旋雙環內醯胺化合物,而是得到螺旋雙環內酯化合物。

    第二章以三號位帶含炔丙基胺側鏈之環己-2-烯-1-醇,與二乙基鋅和二甲基碘在溶劑為二氯甲烷與乙醚的條件下,進行環丙烷化的反應。再利用所得到的三號位帶有炔丙基胺側鏈之雙環[4.1.0]庚烯類化合物,與1.2當量之三氯化鐵在室溫下反應,可在數分鐘內進行擴環、環化、氯化反應。合成含氮螺旋雙環[4.6]十一烯衍生物。以三溴化鐵亦可以進行類似的反應,得到含氮螺旋雙環[4.6]十一烯類的溴化物。

    第三章以4號位上含有順式的3-芳香基炔丙基胺側鏈環己2-烯-1醇化合物,與催化量的三苯基膦氯金和六氟化鍗銀反應,使羥基行 9-endo-dig 反應對被金離子活化的炔基進行反式加成。接著產生克萊森重排反應,再經由互變異構化合成ㄧ組六氫吲哚的酮類衍生物。其差向異構物(epimer)可在氫氧化鉀的鹼性條件下進行差向異構化,而得到熱力學穩定的單一異構物。

    第四章以1,5-烯炔醯胺化合物與三鹵化銦,進行5-exo-dig的分子內合環反應,可以合成1號位上有三鹵化甲基取代之含氮的茚化合物。若以3-苯基炔丙基磺醯胺化合物作取代甲基磺醯胺與三氯化銦反應,則會進行兩次合環反應、鹵化反應,生成茚并吡啶化合物。

    Chapter I, spirolactones containing a vicinal cis-diol adjacent to the spiro-carbon center are prepared by one-pot epoxidation/spirocyclization of cyclohex-2-en-1-ols bearing an ester or amide functional side chain at the C(3) position of the ring. Since both C(3)-ester- and amide-tethered cyclohex-2-en-1-ols generated the same spirolactone, it can be stated that amide side chains underwent hydrolysis to give the corresponding spirolactone.

    Chapter II, the starting N-tosyl-N-(3-arylpropargyl)-tethered- 6-methylbicyclo[4.1.0]heptan-2-ols were prepared from cyclopropanation of the N-tosyl-N-propargyl-tethered 3-methylcyclohex-2-en-1-ols with the Furukawa-modified Simmons−Smith reagent. FeCl3-promoted ring expansion/cyclization/chlorination of N-tosyl-N-(3-arylpropargyl)-tethered- 6-methylbicyclo[4.1.0]heptan-2-ols afforded the 2-azaspiro[4.6]-undec-7-ene rings. Iron tribromide also performed well to generate the 2-aza-4-(bromomethelene)spiro[4.6]-undec-7-ene compounds under the same reaction conditions.

    Chapter III, cis-4-[N-tosyl-N-(3-arylprop-2-ynyl)amino]cyclohex- 2-en-1-ols were cycloisomerized with a catalytic amount of chloro(triphenylphosphine)gold(I) and silver(I) hexafluoroantimonate. The cyclization is proposed to proceed via a 9-endo-dig attack of the hydroxyl group onto the gold-activated alkyne. The resulting allyl vinyl ether intermediate underwent a gold-assisted Claisen-type rearrangement to form 3-exo and 3-endo-3-aroylhexahydroindole derivatives. Treatment of the crude mixture with base provided only 3-exo-aroylhexahydroindoles in good yields and complete stereoselectivity.

    Chapter IV, a 5-exo-dig cyclization of 1,5-enynamide with indium(III) chloride provided trichloromethyl substituted 2-aminoindene derivatives. Reaction of N-((2-(2,2-dihalovinyl)phenyl)ethynyl)-4-methyl-N-(3-phenylprop- 2-yn-1-yl)benzene-sulfonamides with indium(III) halide generated a tandem cyclizations/halogenation to construct indeno[2,1-b]pyridines.

    目錄 I 表格列表 IV 圖列表 V 流程列表 VII 縮寫對照表 XI 摘要 VIII 第ㄧ章 鄰二醇螺旋雙環內酯化合物之合成 1 1. 前言 1 2. 文獻回顧 3 2.1 利用環氧化合物開環進行分子內合環之反應 3 2.2 螺旋雙環內酯化合物之合成 8 3. 結果與討論 10 3.1 側鍊帶有官能基之環己-2-烯-1-醇化合物之合成 10 3.2 螺旋雙環化合物之合成反應 12 3.3 推測環氧化、環化之反應機構 18 4. 結論 19 5. 實驗部份 20 5.1 分析儀器及基本實驗操作 20 5.2 合環前起始物之製備 22 5.3 螺旋雙環內酯化合物之合成 30 6. 參考文獻 38 第二章 含氮螺旋雙環[4.6]十一烯類化合物之合成 41 1 . 前言 41 2 . 文獻回顧 44 2.1 環丙烷基之擴環反應 44 2.2 以三氯化鐵對二級醇進行反應之介紹 48 3 . 實驗結果與討論 52 3.1 實驗流程與反應物製備 52 3.2 產物之結構證明 62 3.3 推測實驗反應機構 69 4 . 結論 72 5 . 實驗部分 73 5.1 分析儀器及基本操作 73 5.2 合環起始物製備步驟 75 5.3 含氮螺旋雙環化合物之合成 87 6. 參考文獻 105 第三章 金催化克來森重排反應合成六氫吲哚化合物 108 1. 前言 108 2. 文獻回顧 109 2.1 六氫吲哚化合物之合成 109 2.2 金(I)催化反應 113 3. 實驗結果與討論 118 3.1 起始物之合成步驟 118 3.2 六氫吲哚衍生物之合環反應 122 3.3 金(I)催化合成六氫吲哚衍生物反應機制的探討 128 4. 結論 130 5. 實驗部分 131 5.1 分析儀器及基本操作 131 5.2 合環前起始物製備步驟 133 5.3 六氫吲哚化合物之合成 151 6. 參考文獻 182 第四章 三鹵化銦輔佐炔醯胺化合物反應 185 1. 前言 185 2. 文獻回顧 189 2.1 天然物介紹 189 2.1 以炔醯胺類化合物進行合環反應 190 3. 實驗結果與討論 195 3.1 氯化/環化反應合成2號位帶有胺基取代之茚化合物 195 3.2 反應機制的推測 209 4. 結論 213 5. 實驗部分 214 5.1 分析儀器及基本操作 214 5.2 起始物製備與合環反應步驟 216 6. 參考文獻 254 X-ray ORTEP 解析之圖譜與數據 257 NMR 圖譜 493

    Ch1.
    1 (a) Smith, K.; Latif, S.; Kirk, D. N. J. Steroid Biochem. 1989, 33, 927; (b) Preisg, C. L.; Laakso, J. A.; Mocek, U. M.; Wang, P. T.; Baez, J.; Byng, G. J. Nat. Prod. 2003, 66, 350; (c) Wan, W.; Maa, G.; Gaoa, W.; Wanga, J.; Lia, L.; Raoa, S.; Zhenga, C.; Jianga, H.; Dengb, H.; Hao J. Org. Biomol. Chem., 2013, 11, 6597; (d) Jing, S.-X.; Luo, S.-H.; Li, C.-H.; Hua, J.; Wang, Y.-L.; Niu, X.-M.; Li, X.-N.; Liu, Y. Huang, C.-S.; Wang, Y.; Li, S.-H. J. Nat. Prod. 2014, 77, 882; (e) Konno, F.; Ishikawa, T.; Kawahata, M.; Yamaguchi, K. J. Org. Chem. 2006, 71, 9818.
    2 (a) Su, J.-Y.; Zhong, Y.-L.; Zeng, L.-M. J. Nat. Prod. 1993, 56, 288; (b) Peterson, E. M.; Xu, K.; Holland, K. D.; McKeon, A. C.; Rothman, S. M.; Ferrendelli, J. A.; Covey, D. F. J. Med. Chem. 1994, 37, 275; (c) Kupchan, S. M.; Dessertine, A. L.; Blaylock, B. T.; Bryan, R. F. J. Org. Chem. 1974, 39, 2477; (d) Liu, M. T.; Lin, S.; Gan, M. L.; Chen, M. H.; Li, L.; Wang, S. J.; Zi, J. C.; Fan, X. N.; Liu, Y.; Si, Y. K.; Yang, Y. C.; Chen, X. G.; Shi, J. G. Org. Lett. 2012, 14, 1004; (e) Konno, F.; Ishikawa, T.; Kawahata, M.; Yamaguchi K. J. Org. Chem., 2006, 71, 9818.
    3 (a) Xiao, W. L.; Li, R. T.; Li, S. H.; Li, X. L.; Sun, H. D.; Zheng, Y. T.; Wang, R. R.; Lu, Y.; Wang, C.; Zheng, Q. T. Org. Lett. 2005, 7, 1263; (b) Huang, S. X.; Li, R. T.; Liu, J. P.; Lu, Y.; Chang, Y.; Lei, C.; Xiao, W. L.; Yang, L. B.; Zheng, Q. T.; Sun, H. D. Org. Lett. 2007, 9, 2079; (c) Paquette, L. A.; Lai, K. W. Org. Lett. 2008, 10, 2111.
    4 Maity, S.; Matcha, K.; Ghosh, S. J. Org. Chem. 2010, 75, 4192.
    5 (a) Vilotijevic, I.; Jamison, T. F. Angew. Chem., Int. Ed. 2009, 48, 5250; (b) Tu, Y. Q.; Fan, C. A.; Ren, S. K.; Chan, A. S. C. J. Chem. Soc., Perkin Trans. 1 2000, 3791; (c) Yang, Y.-F.; Shu, X.-Z.; Luo, J.-Y.; Ali, S.; Liang, Y.-M. Chem. Eur. J., 2012, 18, 8600; (d) Yeh, M. C. P.; Lin, M. N.; Hsu, C. H.; Liang, C. J. J. Org. Chem. 2013, 78, 12381.
    6 Wang, Z.-X.; Tu, Y.; Frohn, M.; Zhang, J.-R.; Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224.
    7 Xiong, Z.; Corey, E. J. J. Am. Chem. Soc. 2000, 122, 4831.
    8 Wang, T.; Shi, S.; Vilhelmsen, M. H.; Zhang, T.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Chem.—Eur. J. 2013, 19, 12512
    9 Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765.
    10 McDonald, F. E.; Bravo, F.; Wang, X.; Wei, X.; Toganoh, M.; Rodrîguez, J. R.; Do, B.; Neiwert, W. A.; Hardcastle, K. I. J. Org. Chem. 2002, 67, 2515.
    11 Dake, G. R.; Fenster, M. D. B.; Fleury, M.; Patrick, B. O. J. Org. Chem. 2004, 69, 5676.
    12 Lin, M. N.; Wu, S. H.; Yeh, M. C. P. Adv. Synth. Catal. 2011, 353, 3290.
    13 施雅芳論文, 國立台灣師範大學化學所, 2010年.
    14 Lee, J.; Wang, S.; Milne, G. W.; Sharma, R.; Lewin, N. E.; Blumberg, P. M.; Marquez, V. E. J. Med. Chem. 1996, 39, 29.
    15 Cao, T.; Linton, E. C.; Deitch, J.; Berritt, S.; Kozlowski, M. C. J. Org. Chem. 2012, 77, 11034.
    16 Hojo, D.; Noguchi, K.; Hirano, M.; Tanaka, K. Angew. Chem., Int. Ed. 2008, 47, 5820.
    17 (a) Mandal, A. K.; Jawalkar, D. G. J. Org. Chem. 1989, 54, 2364; (b) Zhang, X.; Larock, R. C. J. Am. Chem. Soc. 2005, 127, 12230; (c) Tang, B.-X.; Yin,Q.; Tang, R.-Y.; Li, J.-H. J. Org. Chem. 2008, 73, 9008; (d) Tang, B.-X.; Tang, D.-J.; Yu, Q.-F.; Zhang, Y.-H.; Liang, Y.; Zhong, P.; Li, J.-H. Org. Lett. 2008, 10, 1063; (e) Yeoman, J. T. S.; Mak, V. W.; Reisman, S. E. J. Am. Chem. Soc. 2013, 135, 11764; (f) McInturff, E. L.; Mowat, J.; Waldeck, A. R.; Krische, M. J. J. Am. Chem. Soc. 2013, 135, 17230; (g) Aparece, M. D.; Vadola, P. A. Org. Lett. 2014, 16, 6008.
    18 Knochel, P.; Singer, R. D. Chem. Rev. 1993, 93, 2117.
    19 (a) Luche, J.-L. J. Am. Chem. Soc. 1978, 100, 2226; (b) Gemal, A. L.; Luche, A. L. J. Am. Chem. Soc. 1981, 103, 5454.
    20 Yeh, M. C. P.; Lee, Y. C.; Young, T. C. Synthesis, 2006, 3621.
    21 Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.

    Ch2.
    1 Elion, G. B.; Furman, P. A.; Fyfe, J. A.; de Miranda, P.; Beauchamp, L.; Schaeffer, H. J. Proc. Natl. Acad. Sci. U.S.A. 1977, 74, 5716; (b) Sekiyama, T.; Hatsuya, S.; Tanaka, Y.; Uchiyama, M.; Ono, N.; Iwayama, S.; Oikawa, M.; Suzuki, K.; Okunishi, M.; Tsuji, T. J. Med. Chem. 1998, 41, 1284.
    2 Inagaki, H.; Miyauchi, S.; Miyauchi, R. N.; Kawato, H. C.; Ohki, H.; Matsuhashi, N.; Kawakami, K.; Takahashi, H. J. Med. Chem. 2003, 46, 1005.
    3 Welch, S. C.; Valdes, T. A. J. Org. Chem., 1977, 42, 2108.
    4 Wender, P. A.; Keenan, R. M.; Lee, H. Y. J. Am. Chem. Soc. 1987, 109, 4390.
    5 (a) Grushin, V. V. Angew. Chem., Int. Ed. 1998, 37, 994; (b) Isagawa, K.; Kimura, Y.; Kwon S. J. Org. Chem. 1974, 39, 3171; (c) Seyferth, D. Acc. Chem. Res. 1972, 5, 65; (d) Fedoryński, M. Chem. Rev. 2003, 103, 1099.
    6 (a) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1959, 81, 4256; (b) Nakamura, E.; Hirai, A.; Nakamura, M. J. Am. Chem. Soc. 1998, 120, 5844; (c) Long, J.; Yuan, Y.; Shi, Y. J. Am. Chem. Soc. 2003, 125, 13632; (d) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Chem. Rev. 2003, 103, 977.
    7 (a) Kulinkovich, O. G.; de Meijere, A. Chem. Rev. 2000, 100, 2789; (b) Corey, E. J.; Rao, S. A.; Noe, M. C. J. Am. Chem. Soc. 1994, 116, 9345; (c) Casey, C. P.; Strotman, N. A. J. Am. Chem. Soc. 2004, 126, 1699; (d) Wu, Y.-D.; Yu, Z.-X. J. Am. Chem. Soc. 2001, 123, 5777; (e) Kulinkovich, O. G.; Kananovich, D. G. Eur. J. Org. Chem. 2007, 2121.
    8 (a) Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1965, 87, 1353; (b) Meyers, A. I. Romine,J . L.; Fleming, S. A. J. Am. Chem. Soc. 1988, 110, 7245; (c) Sarakinos, G.; Corey, E. J. Org. Lett. 1999, 1, 811.
    9 (a) Furukawa, J.; Kawabata, N.; Nishimura, J. Tetrahedron Lett. 1966, 28, 3353. (b) Furukawa, J.; Kawabata, N.; Nishimura, J. Tetrahedron 1968, 24, 53; (c) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861; (d) Brookhart, M.; Studabaker, W. B. Chem. Rev. 1987, 87, 411; (e) Frühauf, H. W. Chem. Rev. 1997, 97, 523.
    10 Capon, R. J.; Rooney, F.; Murray, L. M.; Collins,E.; Sim, A. T. R.; Rostas, J. A. P.; Butler, M. S.; Carroll, A. R. J. Nat. Prod. 1998, 61, 660.
    11 Ito, Y.; Fujii, S.; Saegusa, T. J. Org. Chem. 1976, 41, 2073.
    12 Lee, P. H.; Lee, J. Tetrahedron Lett. 1998, 39, 7889.
    13 Tucker, J. W.; Stephenson, C. R. J. Org. Lett. 2011, 13, 5468.
    14 Kranz, D. P.; Meier zu Greffen, A.; El Sheikh, S.; Neudörfl, J.-M.; Schmalz, H.-G. Eur. J. Org. Chem. 2011, 2860.
    15 Wang, J.; Huang, W.; Zhang, Z.; Xiang, X.; Liu, R.; Zhou, X. J. Org. Chem. 2009, 74, 3299.
    16 Jefferies, L. R.; Cook, S. P. Org. Lett. 2014, 16, 2026.
    17 Yeh, M. C.; Fang, C. W.; Lin, H. H. Org. Lett. 2012, 14, 1830.
    18 Hatano, M.; Mikami, K. Org. Biomol. Chem. 2003, 1, 3871.
    19 Godleski, S. A.; Valpey, R. S. J. Org. Chem. 1982, 47, 381.
    20 Gansäuer, A.; Otte, M.; Shi, L. J. Am. Chem. Soc. 2011, 133, 416.
    21 (a) Luche, J.-L. J. Am. Chem. Soc. 1978, 100, 2226; (b) Gemal, A. L.; Luche, J. L. J. Am. Chem. Soc. 1981, 103, 5454.
    22 Jin, T.; Himuro, M.; Yamamoto, Y. J. Am. Chem. Soc. 2010, 132, 5590.
    23 Volkmann, R. A.; Andrews, G. C.; Johnson, W. S. J. Am. Chem. Soc. 1975, 97, 4777.
    24 Yeh, M. C. P.; Liang, C. J.; Fan, C. W.; Chiu, W. H.; Lo, J. Y. J. Org. Chem. 2012, 77, 9707.
    25 Fagnoni, M.; Schmoldt, P.; Kirschberg, T.; Mattay, J. Tetrahedron 1998, 54, 6427.
    26 Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.

    Ch3.
    1 (a) Ma, S.; Yu,S.; Gu, Z. Angew. Chem., Int. Ed. 2006, 45, 200; (b) Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem., Int. Ed. 2006, 45, 7896; (c) Furstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410; (d) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180; (e) Arcadi, A. Chem. Rev. 2008, 108, 3266; (f) Jiménez-Núñez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326; (g) Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239; (h) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351; (i) Patil, N. T.; Yamamoto, Y. Chem.Rev. 2008, 108, 3395; (j) Marion, N.; Nolan, S. P. Chem. Soc. Rev. 2008, 37, 177; (k) Abu Sohel, S. M.; Liu, R.-S. Chem. Soc. Rev. 2009, 38, 2269; (l) Bandini, M. Chem. Soc.Rev. 2011, 40, 1358; (m) Corma, A.; Leyva-Pérez, A.; Sabater, M. J. Chem. Rev. 2011, 111, 1657; (n) Krause, N.; Winter, C. Chem. Rev. 2011, 111, 1994; (o) Rudolph, M.; Hashmi, A. S. K. Chem. Soc. Rev. 2012, 41, 2448; (p) Lu, B.-L.; Dai, L.;Shi, M. Chem. Soc. Rev. 2012, 41, 3318.
    2 Ito, Y.; Sawamura, M.; Hayashi, T. J. Am. Chem. Soc. 1986, 108, 6405.
    3 Teles, J. H.; Brode, S.; Chabanas, M. Angew. Chem. Int. Ed. 1998, 37, 1415.
    4 Nugent, W. A. Angew. Chem. Int. Ed. 2012, 51, 8936.
    5 (a) Schwartz, B. D.; White, L. V.; Banwell, M. G.; Willis, A. C. J. Org. Chem. 2011, 76, 8560; (b) Zhang, Q.; Di,Y. T.; Li, C. S.; Fang, X.; Tan, C. J.; Zhang, Z.; Zhang, Y.; He, H. P.; Li, S. L.; Hao, X. J. Org. Lett. 2009, 11, 2357; (c) Hanessian, S.; Dorich, S.; Menz, H. Org. Lett. 2013, 15, 4134.
    6 Mori, M.; Uesaka, N.; Saitoh, F.; Shibasaki, M. J. Org. Chem. 1994, 59, 5643.
    7 Oppolzer, W.; Bedoya-Zurita, M.; Switzer, C. Y. Tetrahedron Lett. 1988, 29, 6433.
    8 (a) Oppolzer, W.; Gaudin, J.-M.; Bedoya-Zurita, M.; Hueso-Rodriguez, J.; Raynham, T.M.; Robyr, C. Tetrahedron Lett.1988, 29, 4709; (b) Lemaire, S.; Giambastiani, G.; Prestat, G.; Poli, G. Eur. J. Org. Chem. 2004, 15, 2840; (c) Wang, L.; Xu, C.; Chen, L.; Hao, X.; Wang, D. Z. Org. Lett. 2014, 16, 1076.
    9 Meng, T.-J.; Hua, Y.-M.; Sun, Y.-J.; Zhu, T.; Wang S. Tetrahedron 2010, 66, 8648.
    10 Yeh, M. C. P.; Pai, H. F.; Lin, Z. J.; Lee, B. R. Tetrahedron 2009, 65, 4789.
    11 Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc. 2005, 127, 6962.
    12 (a) Matsuda, T.; Yamaguchi, Y.; Shigeno, M.; Sato, S.; Murakami, M. Chem. Commun. 2011, 47, 8697; (b) Li, J.; Ji, K.; Zheng, R.; Nelson, J.; Zhang, L. Chem. Commun. 2014, 50, 4130; (c) Jadhav, A. M.; Pagar, V. V.; Liu, R.-S. Angew. Chem., Int. Ed. 2012, 51, 11809; (d) Wang, Y.; Yepremyan, A.; Ghorai, S.; Todd, R.; Aue, D. H.; Zhang, L. Angew. Chem., Int. Ed. 2013, 52, 7795; (e) Cai, P.-J.; Wang, Y.; Liu, C.-H.; Yu, Z.-X. Org. Lett. 2014, 16, 5898; (f) Hansmann, M. M.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2013, 52. 2593.
    13 (a) Gorin, D. J.; Davis, N. R.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 11260; (b) Manzano, R.; Wurm, T.; Rominger, F.; Hashmi, A. S. K. Chem. Eur. J. 2014, 20, 6844; (c) Davies, P. W.; Martin, N. Org. Lett. 2009, 11, 2293; (d) Seregin, I. V.; Gevorgyan, V. J. Am. Chem. Soc. 2006, 128, 12050.
    14 (a) Genin, E.; Toullec, P. Y.; Antoniotti, S.; Brancour, C.; Genêt, J.-P.; Michelet, V. J. Am. Chem. Soc. 2006, 128, 3112; (b) Shiroodi, R. K.; Koleda, O.; Gevorgyan, V. J. Am. Chem. Soc., 2014, 136, 13146; (c) Hashmi, A. S. K.; Wang, T.; Shi, S.; Rudolph, M. J. Org. Chem. 2012, 77, 7761; (d) Dudnik, A. S.; Sromek, A. W.; Rubina, M.; Kim, J. T.; Kel’in, A. V.; Gevorgyan, V. J. Am. Chem. Soc. 2008, 130, 1440; (e) Wang, T.; Shi, S.; Hansmann, M. M.; Rettenmeier, E.; Rudolph, M.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2014, 53, 3715.
    15 Morita, N.; Krause, N. Angew. Chem., Int. Ed. 2006, 45, 1897.
    16 (a) Arcadi, A.; Pietropaolo, E.; Alvino, A.; Michelet, V. Org. Lett. 2013, 15, 2766; (b) Nakamura, I.; Sato, T.; Yamamoto, Y. Angew. Chem. 2006, 118, 4585.
    17 Ye, L.; Cui, L.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 3258.
    18 Asao, N.; Nogami, T.; Lee, S.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 10921.
    19 Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 15978.
    20 Yeh, M. C. P.; Pai, H. F.; Hsiow, C. Y.; Wang, Y. R. Organometallics 2010, 29, 160.
    21 Yeh, M. C. P.; Lin, M. N.; Chang, W. J.; Liou, J. L.; Shih,Y. F. J. Org. Chem. 2010, 75, 6031.
    22 Marino, J. P.; Jaén, J. C. Tetrahedron Lett. 1983, 24, 441.
    23 Mitsunobu, O.; Yamada, M. Bull. Chem. Soc. Jpn. 1967, 40, 2380.
    24 Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467.
    25 Lin, H.-H.; Chen, Y.-J.; Liao, K.-Y.; Yeh, M.-C. P. J. Chin. Chem. Soc. 2014, 61, 1281.
    26 Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.

    Ch4.
    1 (a) DeKorver, K. A.; Li, H.; Lohse, A. G.; Hayashi, R.; Lu, Z.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2010, 110, 5064; (b) Evano, G.; Coste, A.; Jouvin, K. Angew. Chem., Int. Ed. 2010, 49, 2840; (c) Wang, X.-N.; Yeom, H.-S.; Fang, L.-C.; He, S.; Ma, Z.- X.; Kedrowski,B. L.; Hsung, R. P. Acc. Chem. Res. 2014, 47, 560; (d) Lu, T.; Lu, Z.; Ma, Z.-X.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2013, 113, 4862.
    2 Janousek, Z.; Collard, J.; Viehe, H. G. Angew. Chem., Int. Ed. 1972, 11, 917.
    3 (a) Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 3769; (b) Brückner, D. Tetrahedron 2006, 62, 3809.
    4 Joshi, R. V.; Xu, Z.-Q.; Ksebati, M. B.; Kessel, D.; Corbett, T. H.; Drach, J. C.; Zemlicka, J. J. Chem. Soc., Perkin Trans. 1 1994, 1089.
    5 Zhdankin, V. V.; Stang, P. J. Tetrahedron 1998, 54, 10927.
    6 Feldman, K. S.; Bruendl, M. M.; Schildknegt, K.; Bohnstedt, A. C. J. Org. Chem. 1996, 61, 5440.
    7 Frederick, M. O.; Mulder, J. A.; Tracey, M. R.; Hsung, R. P.; Huang, J.; Kurtz, K. C. M.; Shen, L.; Douglas, C. J. J. Am. Chem. Soc. 2003, 125, 2368.
    8 Zhang, Y.; Hsung, R. P.; Tracey, M. R.; Kurtz, K. C. M.; Vera, E. L. Org. Lett. 2004, 6, 1151.
    9 (a) Hamada, T.; Ye, X.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 833; (b) Yao, B.; Liang, Z.; Niu, T.; Zhang, Y. J. Org. Chem.2009, 74, 4630; (c) Sueda, T.; Oshima, A.; Teno, N. Org. Lett. 2011, 13, 3996; (d) Priebbenow, D. L.; Becker, P.; Bolm, C. Org. Lett. 2013, 15, 6155.
    10 Su, J.-Y.; Zhong, Y.-L.; Zheng, L.-M.; Wei, S.; Wong, Q.-W.; Mak, T. C. W.; Zhou, Z.-Y. J. Nat. Prod. 1993, 56, 637.
    11 Orjala, J.; Gerwick, W. H. J. Nat. Prod. 1996, 59, 427.
    12 Lu, M.-Z.; Loh, T.-P. Org. Lett., 2014, 16, 4698.
    13 Li, Y.; Zheng, T.; Wang, W.; Xu, W.; Ma, Y.; Zhang, S.; Wang, H.; Sun, Z. Adv. Synth. Catal. 2012, 354, 308.
    14 Garrido, L.; Zubía, E.; Ortega, M. J.; Salva, J. J. Org. Chem. 2003, 68, 293.
    15 (a) Baran, P. S.; Burns, N. Z. J. Am. Chem. Soc., 2006, 128, 3908; (b) Burns, N. Z.; Baran, P. S. Angew. Chem., Int. Ed., 2008, 47, 205; (c) Tanaka, T.; Inui, H.; Kida, H.; Kodama, T.; Okamoto, T.; Takeshima, A.; Tachia, Y.; Morimoto, Y. Chem. Commun., 2011, 47, 2949; (d) Matveenko, M.; Liang, G.; Lauterwasser, E. M. W.; Zubía, E.; Trauner, D. J. Am. Chem. Soc., 2012, 134, 9291.
    16 Li, H.; Hsung, R. P. Org. Lett. 2009, 11, 4462.
    17 Hsung, R. P.; Zificsak, C. A.; Wei, L.-L.; Douglas, C. J.; Xiong, H.; Mulder, J. A. Org. Lett. 1999, 1, 1237.
    18 Kohnen, A. L.; Mak, X. Y.; Lam, T. Y.; Dunetz, J. R.; Danheiser, R. L. Tetrahedron 2006, 62, 3815.
    19 (a) Huisgen, R. Proc. Chem. Soc., London, 1961, 357; (b) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596.
    20 IJsselstijn, M.; Cintrat, J.-C. Tetrahedron 2006, 62, 3837.
    21 Dateer, R. B.; Shaibu, B. S.; Liu, R.-S. Angew. Chem., Int. Ed. 2012, 51, 113.
    22 Buzas, A.; Istrate, F.; Le Goff, X. F.; Odabachian, Y.; Gagosz, F. J. Organomet. Chem. 2009, 694, 515.
    23 (a) Couty, S.; Liegault, B.; Meyer, C.; Cossy, J. Org. Lett. 2004, 6, 2511; (b) Witulski, B.; Alayrac, C.; Tevzadze-Saeftel, L. Angew. Chem., Int. Ed. 2003, 42, 4257.
    24 (a) Marion, F.; Coulomb, J.; Courillon, C.; Fensterbank, L.; Malacria, M. Org. Lett. 2004, 6, 1509; (b) Zhang, Y.; Hsung, R. P.; Zhang, X.; Huang, J.; Slater, B. W.; Davis, A. Org. Lett. 2005, 7, 1047.
    25 Lin, G.-Y.; Li, C.-W.; Hung, S.-H.; Liu, R.-S. Org. Lett. 2008, 10, 5059.
    26 Poloukhtine, A.; Popik, V. V. J. Am. Chem. Soc. 2007, 129, 12062.
    27 Barluenga, J.; Andina, F.; Aznar, F.; Valdés, C. Org. Lett. 2007, 9, 4143.
    28 Hofmeister, H.; Annen, K.; Laurent, H.; Wiechert, R. Angew. Chem., Int. Ed. 1984, 23, 727.
    29 Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.

    下載圖示
    QR CODE