簡易檢索 / 詳目顯示

研究生: 陳日新
論文名稱: 染料敏化太陽能電池之釕化合物
Ruthenium-Based Sensitizers for Dye-Sensitized Solar Cells
指導教授: 葉名倉
Yeh, Ming-Chang
林建村
Lin, Jiann-Tsuen
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 80
中文關鍵詞: 太陽能電池
英文關鍵詞: DSSC
論文種類: 學術論文
相關次數: 點閱:299下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用Wittig-Horner reaction以及Suzuki coupling,合成出2,2'-bipyridine衍生之配位子:包括引入2-或3-位置取代carbazole,以及fluorene單元之化合物,並以之合成一系列Grätzel-型釕金屬光敏化染料。本系列釕金屬染料的UV吸收光譜在530~550 nm範圍可觀測得金屬→配位子之電荷轉移吸收(metal-to-ligand charge-transfer),當在bipyridine和carbazole、fluorene中間引入雙鍵後,由於有效共軛長度之增加,使吸收峰的波長有明顯的紅位移。以這些釕金屬染料為光敏劑製成染料敏化太陽能電池(dye-sensitized solar cells, DSSCs) ,展現不錯的光電轉換效率。其中染料Ru-vinyl-fluorene有最好的元件效率,參數為:光電轉換效率η = 4.90%;開環電壓Voc = 0.63 V;短路電流Jsc = 11.14 mA/cm2;填充因子FF = 0.70。其光電轉換效率,可達到在相同的條件下製作與量測,以Grätzel染料N719 (cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium (II) bis-tetrabutylammonium) 製成標準元件 (η=7.11%) 的69%。推測較佳的光收成與染料之吸附度導致Ru-vinyl-fluorene元件有較高的效率。

    A series of 2,2'-bipyridine derivatives, incorporating 2- or 3-substituted carbazole, or fluorene unit, have been synthesized via Wittig-Horner reaction and Suzuki coupling. These compounds have been successfully used as ligands for Grätzel-type ruthenium dyes. The metal-to-ligand charge-transfer bands in these complexes appeared in the range of 530~550 nm. A prominent red shift of the MLCT band was observed as an olefinic entity was inserted between the 2,2'-bipyridine and the carbazole or fluorene unit to increase the effective conjugation length. Dye-sensitized solar cells based on these sensitizers exhibited good performance. Among them, Ru-vinyl-fluorene-based cell had the best performance :η (power conversion efficiency), 4.90%;VOC (open-circuit voltage), 0.63 V;JSC (short-circuit current), 11.14 mA/cm2;FF (fill factor), 0.70. The conversion efficiency reaches ~69% of the standard device (η=7.11%) based on N719 (cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium (II) bis-tetrabutylammonium) fabricated and measured under similar condition. The more effective light-harvesting and higher dye density on TiO2 may be the main reasons for better efficiency of Ru-vinyl-fluorene-based cell.

    摘要 I Abstract II 目錄 IV 圖目錄 VII 表目錄 IX 第 1 章 緒論 1 1-1 前言 1 1-2太陽能電池簡介 3 1-3太陽能電池種類分別 5 1-3-1 矽太陽能電池 5 1-3-2 薄膜太陽能電池 6 1-3-3 有機太陽能電池 7 1-4 太陽光譜 11 1-5 光電轉換效率IPCE 13 1-6 太陽能電池之電性量測 14 1-6-1 開環電壓VOC(open circuit voltage) 15 1-6-2 短路電流JSC(short circuit current) 15 1-6-3 填充因子FF(fill factor) 15 1-6-4 能量轉換效率η(conversion efficiency) 15 1-7 染料敏化型太陽能電池的發展 16 1-8 染料敏化太陽能電池的組成結構 17 1-9 染料敏化太陽能電池的工作原理及特性 19 1-10 染料敏化太陽能電池的元件的改進 22 1-10-1 電解質溶液 22 1-10-2 奈米晶半導體 24 1-11 有機染料 25 1-12 有機金屬染料 29 1-13 研究動機 32 第 2 章 實驗部分 34 2-1 實驗儀器之原理與操作 34 2-1-1 雙管式氮氣/真空系統 (Vacuum Line & Schlenk Line) 34 2-1-2 核磁共振光譜儀 (Nuclear Magnetic Resonance,NMR) 34 2-1-3 循環伏安儀 (Cyclic Voltammeter,CV) 35 2-1-4 螢光光譜儀 (Fluorescence Spectormeter) 35 2-1-5 元素分析儀 (Elemental Analyzer) 36 2-1-6 質譜儀 (Mass Spectrometer) 36 2-1-7 太陽光模擬器 (Solar simulator) 36 2-1-8 定電位/定電流儀(Potentiostat/Galvanostat) 36 2-1-9 光電轉化效率測定儀(IPCE measurement) 37 2-2 實驗藥品及溶劑 38 2-3 合成流程 40 2-4 元件製作 51 第 3 章 結果與討論 53 3-1 Ru金屬染料 53 3-1-1 實驗反應機構探討 55 3-2 UV-Vis光譜之探討 56 3-2 CV之測量與探討 58 3-3 元件效率 60 3-4 暫態光伏電位 64 3-5理論計算 65 3-6 結論 74 參考文獻 76

    1. 經濟部能源局-經濟能源白皮書
    2. H. Kallmans and M. Pope, J. Chem. Phys. 1958, 30, 585.
    3. KRI Report No. 8 of Phase XVI, KRI, Inc., Japan (2005)
    4. 黄建昇, 結晶矽太陽能電池發展近況. 工業材料雜誌, 2003, 150.
    5. 郭明村, 薄膜太陽能電池發展近況. 工業材料雜誌, 2003, 138.
    6. S. Guha, J. Yang, D. L. Williamson, Y. Lubianiker, J. D. Cohen, and A. H. Mahan, Appl. Phys. Lett. 1999, 74, 1860.
    7. H. Shirakawa, C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, E. J. Louis, S. C. Gau, and A. G. MacDiarmid, Phys. Rev. Lett. 1977, 39, 1098.
    8. L. Bozano, S. A. Carter, J. C. Scott, G. G. Malliaras, and P. J. Brock, Appl. Phys. Lett. 1999, 74, 1132.
    9. X. Peng, M. C. Schlamp, A. Kadavanich, and A. P. Alivisatos, J. Am. Chem. Soc. 1997, 119, 7019.
    10. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, Appl. Phys. Lett. 2001, 78, 841.
    11. M. Berggren, O. Inganäs, G. Gustafsson, J. C. Carberg, J. Rasmusson, M. R. Anderson, T. Hjertberg, and O. Wennerstron, Nature. 1994, 372, 444.
    12. S. Chaberek, A. Sheep and R. J. Allen, J. Am. Chem. Soc. 1967, 89, 5456.
    13. B. O’ Regan and M. Grätzel, Nature. 1991, 353, 737.
    14. M. Grätzel, Inorg. Chem. 2005, 44, 6841.
    15. A. Hagfeldt and M. Grätzel, Acc. Chem. Res. 2000, 33, 269.
    16. D. Kearns, R. Hollins, A. U. Khan, R. Chambers, and P. Radlick, J. Am. Chem. Soc. 1967, 89, 5456.
    17. H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, Nature. 1976, 261, 402.
    18. J. R. Durrant, and S. A. Haque , Nat. Mater. 2003, 2, 362.
    19. J. Ferber, R. Stangl, and J. Luther. Sol. Energy Mater. Sol. Cells 1998, 53, 29.
    20. A. B. F. Martinson, T. W. Hamann, M. J. Pellin, and J. T. Hupp. Chem. Eur. J. 2008, 14, 4458.
    21. 孟慶波,林原,戴松元編著,″染料敏化奈米晶薄膜太陽電池″,物理,2004, 33, 177.
    22. K. Tennakone, G. A. Kumara, A. R. Kumarasinghe, K. G. U. Wijayantha, and P. M. Sirimanne. Semicond. Sci. Technol. 1995, 10, 1689.
    23. N. Roberson, Angew. Chem. Int. Ed. 2006, 45, 2338.
    24. M. Grätzel, Nature. 2001, 414, 338.
    25. (a) K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H. Arakawa, Chem Commun. 2001, 569. (b) K. Hara, M. Kurashige, Y. D. Oh, C. Kasada, A. Shinpo, S. Suga, K. Sayama, and H. Arakawa, New. J. Chem. 2003, 27, 783.
    26. (a) T. Horiuchi, H. Miura, and S. Uchida, Chem. Commun. 2003, 3036. (b) T. Horiuchi, H. Miura, S. Uchida, and J. Photochem. Photobiol. A 2004, 164, 29. (c) T. Horiuchi, H. Miura, K. Sumioka, and S. Uchida, J. Am. Chem. Soc. 2004, 126, 12218. (d) S. Ito, M. Zakeeruddin, R. H. Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida, and M. Grätzel, Adv. Mater. 2006, 18, 1202.
    27. A. Ehret, L. Stuhl, and M. T. Spitler, J. Phys. Chem. B 2001, 105, 9960.
    28. (a) Q. H. Yao, F. S. Meng, F. Y. Li, H. Tian, and C. H. Huang, J. Mater. Chem. 2003, 13, 1048. (b) Z. S. Wang, F. Y. Li, and C. H. Huang, Chem. Commun. 2000, 2063.
    29. (a) A. C. Khazraji, S. Hotchandani, S. Das, and P. V. Kamat, J. Phys. Chem. B. 1997, 103, 4693. (b) K. Sayama, K. Hara, N. Mori, M. Satsuki, S. Suga, S. Tsukagoshi, Y. Abe, H. Sughara, and H. Arakawa, Chem. Commun. 2000, 1173. (c) K. Sayama, S. Tsukagoshi, T. Mori, K. Hara, Y. Ohga, A. Shinpou, Y. Abe, S. Suga, and H. Arakawa, Sol. Energy Mater. Sol. Cells. 2003, 80, 47.
    30. (a) S. Ferrere, A. Zaben, and A. B. Gregg, J. Phys. Chem. B. 1997, 101, 449. (b) S. Ferrere and A. B. Gregg, New J. Chem. B. 2002, 26, 1155.
    31. M. K. Nazeeruddin, R. H. Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C. H. Fischer, and M. Grätzel. Inog. Chem. 1999, 38, 6298.
    32. K. S. Finnie, J. R. Bartlett, and J. L. Woolfrey. Langmuir. 1998, 14, 2744.
    33. H. G. Agrell, J. Lindgren, and A. Hagfeldt. Solar Energy. 2003, 75, 169.
    34. (a) R. Argazzi, C. A. Bignozzi, T. A. Heimer, F. N. Castellano, and G. J. Meyer. Inorg. Chem. 1994, 33, 5741. (b) K. Finnie and J. Bartlett. Langmuir. 1998, 14, 2744. (c) M. K. Nazeeruddin, M. Amirnasr, P. Comte, J. R. Mackay, A. J. McQuillan, R. Houriet, and M. Grätzel, Langmuir. 2000, 16, 8525. (d) K. Tanaka, S. L. Yau and K. Itaya. J. Electroanal. Chem. 1995, 396, 27. (e) K. Sayama, H. Sugihara, and H. Arakawa. Chem. Mater. 1998, 10, 3825.
    35. C. Y. Chen, S. J. Wu, C. G. Wu, J. G. Chen, and K. C. Ho. Angew. Chem. Int. Ed. 2006, 45, 5822.
    36. C. Y. Chen, S. J. Wu, J. Y. Li, C. G. Wu, J. G. Chen, and K. C. Ho. Adv. Mater. 2007, 19, 3888.
    37. C. Y. Chen, J. G. Chen, S. J. Wu, J. Y. Li, C. G. Wu, and K. C. Ho. Angew. Chem. Int. Ed. 2008, 47, 7342.
    38. M. Tavasli, S. Bettington, M. R. Bryce, A. S. Batsanov, and A. P. Monkman. Synthesis .2005, 10, 1619.
    39. (a) G. Maerker and F. H. Case, J. Am. Chem. Soc. 1958, 80, 2745. (b) D. Wenkert and R. B. Woodward, J. Org. Chem. 1983, 48, 283.
    40. (a) G. G. Isabelle, A. Fabrice, A. Oberto, C. Emiliana, A. B. Carlo, Q. Ping, and J. M. erald. Inorg. Chem. 2001, 40, 6073.
    41. S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon, and Y. E. Sung, Adv. Mater. 2008, 20, 54.
    42. R. C. Hiborn, Am. J. Phys. 1982, 50, 982.

    無法下載圖示 本全文未授權公開
    QR CODE