研究生: |
陳日新 |
---|---|
論文名稱: |
染料敏化太陽能電池之釕化合物 Ruthenium-Based Sensitizers for Dye-Sensitized Solar Cells |
指導教授: |
葉名倉
Yeh, Ming-Chang 林建村 Lin, Jiann-Tsuen |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 太陽能電池 |
英文關鍵詞: | DSSC |
論文種類: | 學術論文 |
相關次數: | 點閱:299 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用Wittig-Horner reaction以及Suzuki coupling,合成出2,2'-bipyridine衍生之配位子:包括引入2-或3-位置取代carbazole,以及fluorene單元之化合物,並以之合成一系列Grätzel-型釕金屬光敏化染料。本系列釕金屬染料的UV吸收光譜在530~550 nm範圍可觀測得金屬→配位子之電荷轉移吸收(metal-to-ligand charge-transfer),當在bipyridine和carbazole、fluorene中間引入雙鍵後,由於有效共軛長度之增加,使吸收峰的波長有明顯的紅位移。以這些釕金屬染料為光敏劑製成染料敏化太陽能電池(dye-sensitized solar cells, DSSCs) ,展現不錯的光電轉換效率。其中染料Ru-vinyl-fluorene有最好的元件效率,參數為:光電轉換效率η = 4.90%;開環電壓Voc = 0.63 V;短路電流Jsc = 11.14 mA/cm2;填充因子FF = 0.70。其光電轉換效率,可達到在相同的條件下製作與量測,以Grätzel染料N719 (cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium (II) bis-tetrabutylammonium) 製成標準元件 (η=7.11%) 的69%。推測較佳的光收成與染料之吸附度導致Ru-vinyl-fluorene元件有較高的效率。
A series of 2,2'-bipyridine derivatives, incorporating 2- or 3-substituted carbazole, or fluorene unit, have been synthesized via Wittig-Horner reaction and Suzuki coupling. These compounds have been successfully used as ligands for Grätzel-type ruthenium dyes. The metal-to-ligand charge-transfer bands in these complexes appeared in the range of 530~550 nm. A prominent red shift of the MLCT band was observed as an olefinic entity was inserted between the 2,2'-bipyridine and the carbazole or fluorene unit to increase the effective conjugation length. Dye-sensitized solar cells based on these sensitizers exhibited good performance. Among them, Ru-vinyl-fluorene-based cell had the best performance :η (power conversion efficiency), 4.90%;VOC (open-circuit voltage), 0.63 V;JSC (short-circuit current), 11.14 mA/cm2;FF (fill factor), 0.70. The conversion efficiency reaches ~69% of the standard device (η=7.11%) based on N719 (cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium (II) bis-tetrabutylammonium) fabricated and measured under similar condition. The more effective light-harvesting and higher dye density on TiO2 may be the main reasons for better efficiency of Ru-vinyl-fluorene-based cell.
1. 經濟部能源局-經濟能源白皮書
2. H. Kallmans and M. Pope, J. Chem. Phys. 1958, 30, 585.
3. KRI Report No. 8 of Phase XVI, KRI, Inc., Japan (2005)
4. 黄建昇, 結晶矽太陽能電池發展近況. 工業材料雜誌, 2003, 150.
5. 郭明村, 薄膜太陽能電池發展近況. 工業材料雜誌, 2003, 138.
6. S. Guha, J. Yang, D. L. Williamson, Y. Lubianiker, J. D. Cohen, and A. H. Mahan, Appl. Phys. Lett. 1999, 74, 1860.
7. H. Shirakawa, C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, E. J. Louis, S. C. Gau, and A. G. MacDiarmid, Phys. Rev. Lett. 1977, 39, 1098.
8. L. Bozano, S. A. Carter, J. C. Scott, G. G. Malliaras, and P. J. Brock, Appl. Phys. Lett. 1999, 74, 1132.
9. X. Peng, M. C. Schlamp, A. Kadavanich, and A. P. Alivisatos, J. Am. Chem. Soc. 1997, 119, 7019.
10. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, Appl. Phys. Lett. 2001, 78, 841.
11. M. Berggren, O. Inganäs, G. Gustafsson, J. C. Carberg, J. Rasmusson, M. R. Anderson, T. Hjertberg, and O. Wennerstron, Nature. 1994, 372, 444.
12. S. Chaberek, A. Sheep and R. J. Allen, J. Am. Chem. Soc. 1967, 89, 5456.
13. B. O’ Regan and M. Grätzel, Nature. 1991, 353, 737.
14. M. Grätzel, Inorg. Chem. 2005, 44, 6841.
15. A. Hagfeldt and M. Grätzel, Acc. Chem. Res. 2000, 33, 269.
16. D. Kearns, R. Hollins, A. U. Khan, R. Chambers, and P. Radlick, J. Am. Chem. Soc. 1967, 89, 5456.
17. H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, Nature. 1976, 261, 402.
18. J. R. Durrant, and S. A. Haque , Nat. Mater. 2003, 2, 362.
19. J. Ferber, R. Stangl, and J. Luther. Sol. Energy Mater. Sol. Cells 1998, 53, 29.
20. A. B. F. Martinson, T. W. Hamann, M. J. Pellin, and J. T. Hupp. Chem. Eur. J. 2008, 14, 4458.
21. 孟慶波,林原,戴松元編著,″染料敏化奈米晶薄膜太陽電池″,物理,2004, 33, 177.
22. K. Tennakone, G. A. Kumara, A. R. Kumarasinghe, K. G. U. Wijayantha, and P. M. Sirimanne. Semicond. Sci. Technol. 1995, 10, 1689.
23. N. Roberson, Angew. Chem. Int. Ed. 2006, 45, 2338.
24. M. Grätzel, Nature. 2001, 414, 338.
25. (a) K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H. Arakawa, Chem Commun. 2001, 569. (b) K. Hara, M. Kurashige, Y. D. Oh, C. Kasada, A. Shinpo, S. Suga, K. Sayama, and H. Arakawa, New. J. Chem. 2003, 27, 783.
26. (a) T. Horiuchi, H. Miura, and S. Uchida, Chem. Commun. 2003, 3036. (b) T. Horiuchi, H. Miura, S. Uchida, and J. Photochem. Photobiol. A 2004, 164, 29. (c) T. Horiuchi, H. Miura, K. Sumioka, and S. Uchida, J. Am. Chem. Soc. 2004, 126, 12218. (d) S. Ito, M. Zakeeruddin, R. H. Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida, and M. Grätzel, Adv. Mater. 2006, 18, 1202.
27. A. Ehret, L. Stuhl, and M. T. Spitler, J. Phys. Chem. B 2001, 105, 9960.
28. (a) Q. H. Yao, F. S. Meng, F. Y. Li, H. Tian, and C. H. Huang, J. Mater. Chem. 2003, 13, 1048. (b) Z. S. Wang, F. Y. Li, and C. H. Huang, Chem. Commun. 2000, 2063.
29. (a) A. C. Khazraji, S. Hotchandani, S. Das, and P. V. Kamat, J. Phys. Chem. B. 1997, 103, 4693. (b) K. Sayama, K. Hara, N. Mori, M. Satsuki, S. Suga, S. Tsukagoshi, Y. Abe, H. Sughara, and H. Arakawa, Chem. Commun. 2000, 1173. (c) K. Sayama, S. Tsukagoshi, T. Mori, K. Hara, Y. Ohga, A. Shinpou, Y. Abe, S. Suga, and H. Arakawa, Sol. Energy Mater. Sol. Cells. 2003, 80, 47.
30. (a) S. Ferrere, A. Zaben, and A. B. Gregg, J. Phys. Chem. B. 1997, 101, 449. (b) S. Ferrere and A. B. Gregg, New J. Chem. B. 2002, 26, 1155.
31. M. K. Nazeeruddin, R. H. Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C. H. Fischer, and M. Grätzel. Inog. Chem. 1999, 38, 6298.
32. K. S. Finnie, J. R. Bartlett, and J. L. Woolfrey. Langmuir. 1998, 14, 2744.
33. H. G. Agrell, J. Lindgren, and A. Hagfeldt. Solar Energy. 2003, 75, 169.
34. (a) R. Argazzi, C. A. Bignozzi, T. A. Heimer, F. N. Castellano, and G. J. Meyer. Inorg. Chem. 1994, 33, 5741. (b) K. Finnie and J. Bartlett. Langmuir. 1998, 14, 2744. (c) M. K. Nazeeruddin, M. Amirnasr, P. Comte, J. R. Mackay, A. J. McQuillan, R. Houriet, and M. Grätzel, Langmuir. 2000, 16, 8525. (d) K. Tanaka, S. L. Yau and K. Itaya. J. Electroanal. Chem. 1995, 396, 27. (e) K. Sayama, H. Sugihara, and H. Arakawa. Chem. Mater. 1998, 10, 3825.
35. C. Y. Chen, S. J. Wu, C. G. Wu, J. G. Chen, and K. C. Ho. Angew. Chem. Int. Ed. 2006, 45, 5822.
36. C. Y. Chen, S. J. Wu, J. Y. Li, C. G. Wu, J. G. Chen, and K. C. Ho. Adv. Mater. 2007, 19, 3888.
37. C. Y. Chen, J. G. Chen, S. J. Wu, J. Y. Li, C. G. Wu, and K. C. Ho. Angew. Chem. Int. Ed. 2008, 47, 7342.
38. M. Tavasli, S. Bettington, M. R. Bryce, A. S. Batsanov, and A. P. Monkman. Synthesis .2005, 10, 1619.
39. (a) G. Maerker and F. H. Case, J. Am. Chem. Soc. 1958, 80, 2745. (b) D. Wenkert and R. B. Woodward, J. Org. Chem. 1983, 48, 283.
40. (a) G. G. Isabelle, A. Fabrice, A. Oberto, C. Emiliana, A. B. Carlo, Q. Ping, and J. M. erald. Inorg. Chem. 2001, 40, 6073.
41. S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon, and Y. E. Sung, Adv. Mater. 2008, 20, 54.
42. R. C. Hiborn, Am. J. Phys. 1982, 50, 982.