研究生: |
張弼程 |
---|---|
論文名稱: |
Zassenhaus Conjecture for Some Metabelian Groups |
指導教授: | 劉家新 |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 27 |
英文關鍵詞: | integral group rings, Zassenhaus Conjecture, torsion units |
論文種類: | 學術論文 |
相關次數: | 點閱:152 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在1960 年代中期, 關於 integral group rings 中的 torsion units 及 finite subgroups,Zassenhaus 提出了三個猜想。
其中最強的一個猜想(ZC-3)如此敘述:
如果 H 是 V(ZG) 中的有限子群, 則 H 會和 G 裡的一個子群在 QG 中共軛。
雖然此一猜想已有反例,但依然具有研究價值。在此篇論文中我們將證明:
若一有限群G包含一個 normal abelian Sylow p-subgroup A,並且G/ A 是abelian,則G 滿足(ZC-3)。
In the 1960's, H. Zassenhaus made three conjectures about torsion units and finite subgroups of the units in integral group rings.
The strongest one (ZC-3) states:
If H is a finite subgroup of V(ZG), then H is conjugate to a subgroup of G in QG.
In this thesis, we prove that if G contains a normal abelian Sylow p-subgroup A with G/ A abelian, then (ZC-3) holds for G.
[CR90] Charles W. Curtis and Irving Reiner. Methods of representation theory. Vol. I. Wiley Classics Library. John Wiley & Sons Inc., New York, 1990. With applications to finite groups and orders, Reprint of the 1981 original, A Wiley-Interscience Publication.
[DJ96] Michael A. Dokuchaev and Stanley O. Juriaans. Finite subgroups in integral group rings. Canad. J. Math., 48(6):1170-1179, 1996.
[DJPM97] Michael A. Dokuchaev, Stanley O. Juriaans, and Cesar Polcino Milies. Integral group rings of Frobenius groups and the conjectures of H. J. Zassenhaus. Comm. Algebra, 25(7):2311-2325, 1997.
[Gor68] Daniel Gorenstein. Finite groups. Harper & Row Publishers, New York, 1968.
[HB82] Bertram Huppert and Norman Blackburn. Finite groups. II, volume 242 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1982. AMD, 44.
[Her02] Martin Hertweck. Integral group ring automorphisms withoutZassenhaus factorization. Illinois J. Math., 46(1):233-245, 2002.
[Her06] Martin Hertweck. On the torsion units of some integral group rings. Algebra Colloq., 13(2):329-348, 2006.
[HK02] Martin Hertweck and Wolfgang Kimmerle. On principal blocks of p-constrained groups. Proc. London Math. Soc. (3), 84(1):179-193, 2002.
[Isa08] I. Martin Isaacs. Finite group theory, volume 92 of Graduate Studies in Mathematics. American Mathematical Society, Providence,RI, 2008.
[Liu08] Jen-Hao Liu. Zassenhaus conjecture for groups of order p2q. Comm. Algebra, 36(5):1671-1674, 2008.
[Rog91] Klaus W. Roggenkamp. Observations on a conjecture of Hans Zassenhaus. In Groups-St. Andrews 1989, Vol. 2, volume 160 of London Math. Soc. Lecture Note Ser., pages 427-444. Cambridge Univ. Press, Cambridge, 1991.
[Seh93] S. K. Sehgal. Units in integral group rings, volume 69 of Pitman Monographs and Surveys in Pure and Applied Mathematics. Longman Scientic & Technical, Harlow, 1993. With an appendix by Al Weiss.
[Val94] Angela Valenti. Torsion units in integral group rings. Proc. Amer. Math. Soc., 120(1):1-4, 1994.
[Wei88] Alfred Weiss. Rigidity of p-adic p-torsion. Ann. of Math. (2), 127(2):317-332, 1988.
[Wei91] Alfred Weiss. Torsion units in integral group rings. J. Reine Angew. Math., 415:175-187, 1991