研究生: |
劉哲瑋 Zhe-Wei Liu |
---|---|
論文名稱: |
具熱效應之鋰電池單元/模組實驗量測與即時動態模型建立 Experimental measurement and online dynamics modeling for a unit cell/module of lithium batteries with thermal effects |
指導教授: |
洪翊軒
Hung, Yi-Hsuan |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 磷酸鋰鐵電池 、溫度效應 、交流阻抗 、系統建模 、等效電路 |
英文關鍵詞: | lithium-iron-phosphate battery, thermal effect, ac impedance, modeling, equivalent electric circuit |
論文種類: | 學術論文 |
相關次數: | 點閱:227 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文之研究目的為磷酸鋰鐵電池單電池/電池並聯之動態量測與分析,並建立一具有溫度效應之鋰電池即時動態模型。本研究使用3.3V/ 2.3Ah之電池作為實驗樣本,充/放電電流設定為1C(2.3A)與2C(4.6A),並將環境溫度控制於攝氏0度、20度、40度、60度等四個溫度下分別進行充/放電實驗、交流阻抗分析及熱效應實驗,利用實驗所得之數據,建立一5元件(Rs、Ls、Cp、Rp、W)之等效電路,並將實驗結果利用等效電路進行參數鑑別,最後透過Matlab/Simulink軟體建構一具溫度效應之鋰電池動態模型,其中電池之熱容量與熱傳係數藉由電池雙階段熱動態實驗法鑑別出,可建構出一階熱動態模型。
單電池實驗與具熱效應電池模型模擬結果顯示:固定電流充電與變動電流放電之模擬結果與實驗結果趨勢相近,系統參數將隨不同SOC與溫度做即時變化。固定電流充電輸出電壓平均誤差與溫度變化誤差各為xx%、yy%;變動電流放電輸出電壓平均誤差與溫度變化誤差各為xx%、yy%,因此表示此模型可成功模擬電池細部動態。而在並聯電池與單電池實驗結果顯示:同樣C-rate與溫度之充放電條件下,並聯電池之電容量較單電池低。而交流阻抗實驗顯示串聯電阻值較單電池為高。未來將延伸串聯電池實驗以建構電池系統之熱動態模型,以供電動車進行電池系統開發。
關鍵字:磷酸鋰鐵電池、溫度效應、交流阻抗、系統建模、等效電路
This research studies experimental measurement for a unit cell/parallel module of lithium-iron-phosphate battery, and an on-line lithium battery dynamic model with thermal effect was constructed. We used a 3.3V/2.3Ah battery for the sample. The operation conditions were set to be 1C(2.3A) and 2C(4.6A), and 4 controlled temperatures of 0℃, 20℃, 40℃, and 60℃. Experiments for charge and discharge, AC impedance analysis, and experiments of thermal effect were conducted. Using the measured data, a 5-element (Rs、Ls、Cp、Rp、W) equivalent electric circuit was derived as well as the identification of parameter values. Sequentially, through the Matlab/Simulink software package, a lithium battery dynamic model with thermal effect was built. The heat capacity and heat transfer coefficient were derived by a two-step thermodynamics experimental method. A first-order thermal dynamic model was established.
From the experimental results and the battery model with thermal effect of the unit cell, it show that: the simulation and experimental results are fitted well under the scenarios of constant charging current and varying discharge current. The system parameters change on-line with varying SOC and the temperature. The average errors of battery voltage and battery temperature in the constant charging current case were xx% and yy%; while those in the varying discharging current case were xx% and yy%. It indicates that the model can successfully simulate the detailed battery dynamics. Comparing the experimental results between parallel module and the unit cell cases: under the same C-rate charge/discharge and battery temperature, the electric capacity value of parallel module is lower. The AC impedance results demonstrated that the ESR value was smaller. The serial module experiment will be further conducted for the purpose of developing the battery systems in electric vehicles in the near future.
Keywords: lithium-iron-phosphate battery、thermal effect、ac impedance、modeling、equivalent electric circuit
[1] 工業材料雜誌314期
[2] F. Huet, “A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries,"Journal of Power Sources, Vol.70, May 19, pp. 59-69 , 1998.
[3] Michael A. Roscher, Dirk Uwe Sauer, “Dynamic electric behavior and open-circuit-voltage modeling of LiFePO4-based lithium ion secondary batteries,"Journal of Power Sources, Vol.196, July 7, pp. 331-336 , 2010.
[4] Shalini Rodrigues, N. Munichandraiah, A.K. Shukla, “A review of state-of-charge indication of batteries by means of a.c. impedance measurements,"Journal of Power Sources, Vol.87, August 4, pp. 12-20, 1999.
[5] Andreas Jossen, “Fundamentals of battery dynamics,"Journal of Power Sources, Vol.154, December 1, pp. 530-538 , 2005.
[6] 鄭錦淑,鋰電池材料熱分析研究,工業材料雜誌264期, pp. 118~122.
[7] A.A. Pesaran and M. Keyser,“Thermal Characteristics of Selected EV and HEV Batteries,”Annual Battery Conference, Long Beach, California, January 9-12, 2001.
[8] J. Gomez, R. Nelson, E.E. Kalu, M.H. Weatherspoon, J.P. Zheng, “Equivalent circuit model parameters of a high-power Li-ion battery: Thermal and state of charge effects,”Journal of Power and Energy, vol.196, January 15, pp. 4826-4831 , 2011.
[9] P. Suresh, A.K Shukla, N. Munichandriah, “Temperature dependence studies of a.c. impedance of lithium-ion cells,” Journal of Applied Electrochemistry, Vol. 32, February 19, pp. 267-273 , 2002.
[10] D. Andre, M. Meiler, K. Steiner, Ch. Wimmer, T. Soczka-Guth, D.U. Sauer, “Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental inverstigation,” Journal of Power Sources, vol.196, June 15, pp. 5334-5341 , 2011.
[11] Williford R, Viswanathan V, Zhang J-G, “Effects of entropy changes in anodes and cathodes on the thermal behavior of lithium ion batteries,” Journal of Power Sources, Vol.189, April 1, pp. 101–107 , 2009.
[12] Viswanathan V, Choi D, Wang D, Xu W, Towne S, Williford R, et al. “Effect of entropy change of lithium intercalation in cathodes and anodes on Li-ion battery thermal management,” Journal of Power Sources, Vol.195, June 1, pp. 3720–3729 , 2010.
[13] Onda K, Kameyama H, Hanamoto T, Ito K, “Experimental study on heat
generation behavior of small lithium-ion secondary batteries,” Journal of The Electrochemical Society, Vol.150, January 31, pp. A285–A291 , 2003.
[14] Onda K, Ohshima T, Nakayama M, Fukuda K, Araki T. “Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles,” Journal of Power Sources, Vol.158, July 14, pp. 535–542 , 2006.
[15] Hong J-S, Maleki H, Al Hallaj S, Redey L, Selman J, “Electrochemical calorimetric studies of lithium-ion cells, ” Journal of The Electrochemical Society, Vol.150, November 7, pp. 1489-1501 , 1997.
[16] E. Barsoukov, J. R. Macdonald, Impedance Spectroscopy Theory, Experiment, and Application, Second Edition, John Wiley & Sons, 2005.
[17] Seongjun Lee, Jonghoon Kim, Jaemoon Lee, B.H. Cho, “State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge,” Journal of Power Sources, vol.185, December 1, pp. 1367-1373 , 2008.
[18] Nguyen Truong Thinh, Nguyen Ngoc Phuong, Tuong Phuoc Tho, “ac impedance based state of charge dynamic modeling of a LiFe4 battery for hybrid electric vehicle applications,” Journal of Engineering Technology and Education, The 2012 International Conference on Green Technology and Sustainable Development.
[19] Liye Wang, Lifang Wang, Chenglin Liao, “Research on improved EKF algorithm applied on estimate EV battery SOC,” IEEE, Power and Energy Engineering Conference (APPEEC), pp. 1-4 , 2010.
[20] Min Chen, Rincon-Mora,“Accurate electrical battery model capable of predicting runtime and I-V performance,” IEEE, Transactions on Energy Conversion, Vol.21, June 5, pp. 504-511 , 2006.
[21] J. Yamaki, S. Tobishima, K. Hayashi, K. Saito, Y. Nemoto, and M.Arakawa, “A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte,” Journal of Power Sources, Vol.74, August 1, pp. 219-227 , 1998.
[22] 李孟倫,快速充電鋰離子二次電池負極複合碳材之研究,國立清華大學材料科學工程學系研究所碩士論文,2009。
[23] 陳仁傑,鋰離子電池管理系統研製,國立中大學電機工程研究所碩士論文,2010。
[24] 雷永泉、萬群、石永康,新能源材料,台北:新文京開發,(2004)。
[25] C. R. Pals and J. Newman, “Thermal Modeling of the Lithium Polymer Battery: Temperature Profiles in a Cell Stack,” Journal of The Electrochemical Society, Vol.142, May 31, pp. 3282-3288 , 1995.
[26] 林暐智,超級電容器交流阻抗分析與燃料電池車之能量管理系統設計,國立清華大學動力機械工程學系碩士論文,2006。