簡易檢索 / 詳目顯示

研究生: 蔡福利
Tsai, Fu-Li
論文名稱: 全無機二維層狀鉛鹵素鈣鈦礦奈米晶體之合成
Synthesis of All-Inorganic Two-Dimensional Ruddlesden-Popper Lead Halide Perovskite Nanocrystals
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 62
中文關鍵詞: 全無機鹵化物鈣鈦礦奈米晶體
英文關鍵詞: all-inorganic RP phase halide perovskite
DOI URL: http://doi.org/10.6345/NTNU201900411
論文種類: 學術論文
相關次數: 點閱:96下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來,奈米級鹵化鈣鈦礦的開發取得了巨大的進步,因為其具有寬範圍的帶隙和可調控的光學及電子特性等卓越的特性。然而,鹵化鈣鈦礦奈米晶體的低穩定性尚未得到改善,所以為了獲得穩定性較佳的鈣鈦礦奈米晶體,科學家們開發出具有量子阱結構的Ruddlesden-Popper(RP)相鹵化鈣鈦礦。然而到目前為止,Ruddlesden-Popper相的鹵化物鈣鈦礦報導主要都是具有長碳有機鏈的混合有機-無機化合物,有關Ruddlesden-Popper相的全無機鹵化物鈣鈦礦報導目前也僅有層數為一的混鹵素鈣鈦礦(Cs2PbI2Cl2)的報導。並且基於密度泛函理論 (DFT)的計算,低層數Ruddlesden-Popper相的單一鹵化物鈣鈦礦(Cs2PbX4)晶體結構是不穩定的。因此,為了合成相穩定的鈣鈦礦奈米晶體我們使用了更強的表面鍵結配體。所以在我的實驗中使用熱注射法並藉由引入強的表面鍵結配體十八烷二酸(Octadecanedioic acid)成功合成出不同層數(n = 3、4)且相穩定的Csn+1PbnBr3n+1奈米片並且未混雜不同的層數。不同層數的樣品光譜圖呈現不同的放光位置,從2.43 eV到2.70 eV,表現出可調控的能隙特性。而由X-光粉末繞射圖的等間距現象可以證實材料確實為層狀結構,且放置在一般環境下的觀測結果,展現出比三維鈣鈦礦更佳的穩定性,並將結果和X-光粉末繞射圖的密度泛函理論計算做比對,可以發現兩者的繞射峰位置是一致。更進一步使用掃描穿透式電子顯微鏡直接觀察晶體結構的排列,證實確實為Ruddlesden-Popper相的晶格結構排列。最後我們進行了光響應的測量並將其應用於光感測器上,在7V偏壓下測量得到的開關比約為35。

    In recent years, great progress has been developed in halide perovskite with nanoscale due to their outstanding properties, such as wide range of band gaps and tunable optoelectronic properties. However, the poor stability of halide perovskite nanocrystals has not been improved. To obtain long-term stability perovskite nanocrystals, the scientists are developed the Ruddlesden-Popper (RP) phase halide perovskite with quantum well structure. So far, most of reports are organic-inorganic hybrid RP phase involving long carbon chains in this class. The all-inorganic RP phase halide perovskite report is currently only reported with n = 1 mixed halide (Cs2PbI2Cl2). Based on DFT calculation, the crystal structure of single halide Cs2PbX4 are unstable. Therefore, to synthesize phase stabilized perovskite nanocrystals, we use stronger bonding surface ligands. In this study, we used hot injection method and successfully synthesized the phase stable Csn+1PbnBr3n+1 nanosheets (n = 3, 4) by introducing stronger bounding surface ligand, octadecanedioic acid. From PL spectra, they exhibit tunable band gap from 2.43 eV to 2.70 eV. The repeating unit of the powder X-ray diffraction pattern confirms that the material is a layered structure, and show better stability than CsPbBr3 in ambient condition. Our results are matched with simulate powder X-ray diffraction by density functional theory (DFT). Furthermore, the images from scanning transmission electron microscope show directly the arrangement of the crystal structure, indicated that the crystal structure is indeed RP phase. Finally, we obtain the photoresponse in visible light, the on-off switching measurements is about 35 under 7V bias voltage.

    誌謝 I 摘要 II Abstract III 目錄 IV 表目錄 VII 第一章 緒論 1 1-1 奈米科技 1 1-2 奈米材料 2 1-2-1 奈米材料特性 3 1-2-2 奈米材料之發展 4 1-3 鈣鈦礦簡介及應用 5 1-3-1 三維鈣鈦礦的基本結構及應用 5 1-3-2 金屬鹵化鈣鈦礦之發展及應用 7 1-3-3 鈣鈦礦的結構多樣性 10 1-4 研究動機 12 第二章 文獻回顧 13 2-1 Ruddlesden-Popper (RP)鈣鈦礦介紹 13 2-1-1 RP鈣鈦礦塊材及奈米晶體 15 2-1-2 RP鈣鈦礦奈米晶體之鑑定 19 2-2 Ruddlesden-Popper鈣鈦礦之不同空間劑 22 2-2-1 有機-無機RP鉛鹵素鈣鈦礦 22 2-2-2 全無機RP鉛鹵素鈣鈦礦 24 2-3 二維鈣鈦礦材料之應用 27 第三章 儀器設備 30 3-1 紫外光/可見光/近紅外光光譜儀 30 3-2 螢光光譜儀 31 3-3 時間解析螢光光譜儀 32 3-4 原子力顯微鏡 33 3-5 穿透式電子顯微鏡 34 3-6 掃描穿透式電子顯微鏡 35 3-7 X -光粉末繞射儀 35 3-8 旋轉塗佈機 37 第四章 實驗藥品及步驟 38 4-1 實驗藥品 38 4-2 實驗流程圖 39 4-3 實驗步驟 40 4-3-1 三維鈣鈦礦CsPbBr3之合成步驟 40 4-3-2 二維層狀鈣鈦礦Csn+1PbnBr3n+1 (n = 3)之合成步驟 41 4-3-3 二維層狀鈣鈦礦Csn+1PbnBr3n+1 (n = 4)之合成步驟 42 第五章 結果與討論 43 5-1 全無機三維與二維層狀鈣鈦礦結構分析 43 5-1-1 全無機三維與二維層狀鈣鈦礦TEM及HR-TEM圖 43 5-1-2 二維層狀鈣鈦礦AFM圖 44 5-1-3 全無機三維與二維層狀鈣鈦礦X-光粉末繞射圖比較 45 5-1-4 二維層狀鈣鈦礦樣品及模擬X-光粉末繞射圖比對 46 5-1-5 X-光粉末繞射圖之結構穩定性測試圖 48 5-2 全無機三維與二維層狀鈣鈦礦STEM圖分析 50 5-3 全無機三維與二維層狀鈣鈦礦吸收與螢光光譜圖 52 5-3-1 全無機三維與二維層狀鈣鈦礦吸收與螢光光譜分析 52 5-3-2 全無機三維與二維層狀鈣鈦礦時間解析螢光光譜圖 54 5-4 光感測器之應用 55 第六章 結論與未來展望 56 第七章 參考資料 57

    1. 牟中原、陳家俊, <奈米材料研究發展>. 科學發展月刊 2000.
    2. Alivisatos, A. P., Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 1996, 271 (5251), 933-937.
    3. Li, D., Liao, P., Shai, X., Huang, W., Liu, S., Li, H., Shen, Y.; Wang, M., Recent progress on stability issues of organic–inorganic hybrid lead perovskite-based solar cells. RSC Advances 2016, 6 (92), 89356-89366.
    4. Stoumpos, C. C., & Kanatzidis, M. G., The Renaissance of Halide Perovskites and Their Evolution as Emerging Semiconductors. Acc Chem Res 2015, 48 (10), 2791-2802.
    5. Opel, M., Spintronic oxides grown by laser-MBE. Journal of Physics D: Applied Physics 2011, 45 (3), 033001.
    6. Weber, D., CH3NH3PbX3, ein Pb (II)-system mit kubischer perowskitstruktur /CH3NH3PbX3, a Pb (II)-system with cubic perovskite structure. Zeitschrift für Naturforschung B 1978, 33 (12), 1443-1445.
    7. Weber, D., CH3NH3SnBrxl3-x (x = 0-3), ein Sn (II)-System mit kubischer Perowskitstruktur. Zeitschrift für Naturforschung B 1978, 33 (12), 862-865.
    8. Shi, D., Adinolfi, V., Comin, R., Yuan, M., Alarousu, E., Buin, A., Chen, Y., Hoogland, S., Rothenberger, A., Katsiev, K., Losovyj, Y., Zhang, X., Dowben, P. A., Mohammed, O. F., Sargent, E. H., Bakr, O. M., Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347 (6221), 519-522.
    9. Soufiani, A. M., Huang, F., Reece, P., Sheng, R., Ho-Baillie, A., Green, M. A., Polaronic exciton binding energy in iodide and bromide organic-inorganic lead halide perovskites. Applied Physics Letters 2015, 107 (23), 231902.
    10. Stranks, S. D., Eperon, G. E., Grancini, G., Menelaou, C., Alcocer, M. J., Leijtens, T., Herz, L. M., Petrozza, A., Snaith, H. J., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342 (6156), 341-344.
    11. Tanaka, K., Takahashi, T., Ban, T., Kondo, T., Uchida, K., Miura, N., Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Communications 2003, 127 (9-10), 619-623.
    12. Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society 2009, 131 (17), 6050-6051.
    13. Nazarenko, O., Yakunin, S., Morad, V., Cherniukh, I., Kovalenko, M. V., Single crystals of caesium formamidinium lead halide perovskites: solution growth and gamma dosimetry. NPG Asia Materials 2017, 9 (4), e373.
    14. Li, W. G., Rao, H. S., Chen, B. X., Wang, X. D., Kuang, D. B., A formamidinium–methylammonium lead iodide perovskite single crystal exhibiting exceptional optoelectronic properties and long-term stability. Journal of Materials Chemistry A 2017, 5 (36), 19431-19438.
    15. Protesescu, L., Yakunin, S., Bodnarchuk, M. I., Krieg, F., Caputo, R., Hendon, C. H., Yang, R. X., Walsh, A., Kovalenko, M. V., Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett 2015, 15 (6), 3692-3696.
    16. Zhang, Y. Y., Chen, S., Xu, P., Xiang, H., Gong, X. G., Walsh, A., Wei, S.-H., Intrinsic instability of the hybrid halide perovskite semiconductor CH3NH3PbI3. Chinese Physics Letters 2018, 35 (3), 036104.
    17. Nagabhushana, G. P., Shivaramaiah, R., Navrotsky, A., Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites. Proceedings of the National Academy of Sciences 2016, 113 (28), 7717-7721.
    18. Li, B., Zhang, Y., Fu, L., Yu, T., Zhou, S., Zhang, L., Yin, L., Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nat Commun 2018, 9 (1), 1076.
    19. Docampo, P., Bein, T., A Long-Term View on Perovskite Optoelectronics. Acc Chem Res 2016, 49 (2), 339-346.
    20. Kim, S., Bae, S., Lee, S. W., Cho, K., Lee, K. D., Kim, H., Park, S., Kwon, G., Ahn, S. W., Lee, H. M., Kang, Y., Lee, H. S., Kim, D., Relationship between ion migration and interfacial degradation of CH3NH3PbI3 perovskite solar cells under thermal conditions. Sci Rep 2017, 7 (1), 1200.
    21. Gonzalez-Carrero, S., Galian, R. E., Perez-Prieto, J., Organic-inorganic and all-inorganic lead halide nanoparticles. Opt Express 2016, 24 (2), A285-A301.
    22. Cheng, Z., Lin, J., Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. CrystEngComm 2010, 12 (10), 2646-2662.
    23. Shi, E., Gao, Y., Finkenauer, B. P., Akriti, Coffey, A. H., Dou, L., Two-dimensional halide perovskite nanomaterials and heterostructures. Chem Soc Rev 2018, 47 (16), 6046-6072.
    24. Ruddlesden, S. N., Popper, P., The compound Sr3Ti2O7 and its structure. Acta Crystallographica 1958, 11 (1), 54-55.
    25. Matvejeff, M., Synthesis and characterization of some Ruddlesden-Popper and spinel type oxides. Helsinki University of Technology, 2007.
    26. Hu, H., Salim, T., Chen, B., Lam, Y. M., Molecularly Engineered Organic-Inorganic Hybrid Perovskite with Multiple Quantum Well Structure for Multicolored Light-Emitting Diodes. Sci Rep 2016, 6, 33546.
    27. Yan, J., Qiu, W., Wu, G., Heremans, P., Chen, H., Recent progress in 2D/quasi-2D layered metal halide perovskites for solar cells. Journal of Materials Chemistry A 2018, 6 (24), 11063-11077.
    28. Vybornyi, O., Yakunin, S., Kovalenko, M. V., Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals. Nanoscale 2016, 8 (12), 6278-6283.
    29. Zhang, F., Zhong, H., Chen, C., Wu, X. G., Hu, X., Huang, H., Han, J., Zou, B., Dong, Y., Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. ACS Nano 2015, 9 (4), 4533-4542.
    30. Hassan, Y., Song, Y., Pensack, R. D., Abdelrahman, A. I., Kobayashi, Y., Winnik, M. A., Scholes, G. D., Structure-Tuned Lead Halide Perovskite Nanocrystals. Adv Mater 2016, 28 (3), 566-573.
    31. Aharon, S., Etgar, L., Two Dimensional Organometal Halide Perovskite Nanorods with Tunable Optical Properties. Nano Lett 2016, 16 (5), 3230-3235.
    32. Yu, Y., Zhang, D., Yang, P., Ruddlesden-Popper Phase in Two-Dimensional Inorganic Halide Perovskites: A Plausible Model and the Supporting Observations. Nano Lett 2017, 17 (9), 5489-5494.
    33. Smith, I. C., Hoke, E. T., Solis‐Ibarra, D., McGehee, M. D., Karunadasa, H. I., A layered hybrid perovskite solar‐cell absorber with enhanced moisture stability. Angewandte Chemie International Edition 2014, 53 (42), 11232-11235.
    34. Cao, D. H., Stoumpos, C. C., Farha, O. K., Hupp, J. T., Kanatzidis, M. G., 2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications. J Am Chem Soc 2015, 137 (24), 7843-7850.
    35. Raghavan, C. M., Chen, T. P., Li, S. S., Chen, W. L., Lo, C. Y., Liao, Y. M., Haider, G., Lin, C. C., Chen, C. C., Sankar, R., Chang, Y. M., Chou, F. C., Chen, C. W., Low-Threshold Lasing from 2D Homologous Organic-Inorganic Hybrid Ruddlesden-Popper Perovskite Single Crystals. Nano Lett 2018, 18 (5), 3221-3228.
    36. Stoumpos, C. C., Cao, D. H., Clark, D. J., Young, J., Rondinelli, J. M., Jang, J. I., Hupp, J. T., Kanatzidis, M. G., Ruddlesden–Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors. Chemistry of Materials 2016, 28 (8), 2852-2867.
    37. Li, J., Yu, Q., He, Y., Stoumpos, C. C., Niu, G., Trimarchi, G. G., Guo, H., Dong, G., Wang, D., Wang, L., Kanatzidis, M. G., Cs2PbI2Cl2, All-Inorganic Two-Dimensional Ruddlesden-Popper Mixed Halide Perovskite with Optoelectronic Response. J Am Chem Soc 2018, 140 (35), 11085-11090.
    38. Akkerman, Q. A., Bladt, E., Petralanda, U., Dang, Z., Sartori, E., Baranov, D., Abdelhady, A. L., Infante, I., Bals, S., Manna, L., Fully Inorganic Ruddlesden–Popper Double Cl–I and Triple Cl–Br–I Lead Halide Perovskite Nanocrystals. Chemistry of Materials 2019, 31 (6), 2182-2190.
    39. Byun, J., Cho, H., Wolf, C., Jang, M., Sadhanala, A., Friend, R. H., Yang, H., Lee, T. W., Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes. Adv Mater 2016, 28 (34), 7515-7520.
    40. Ahmad, S., Kanaujia, P. K., Beeson, H. J., Abate, A., Deschler, F., Credgington, D., Steiner, U., Prakash, G. V., Baumberg, J. J., Strong Photocurrent from Two-Dimensional Excitons in Solution-Processed Stacked Perovskite Semiconductor Sheets. ACS Appl Mater Interfaces 2015, 7 (45), 25227-25236.
    41. Zhou, J., Chu, Y., Huang, J., Photodetectors Based on Two-Dimensional Layer-Structured Hybrid Lead Iodide Perovskite Semiconductors. ACS Appl Mater Interfaces 2016, 8 (39), 25660-25666.
    42. Li, Z.-J., Hofman, E., Davis, A. H., Maye, M. M., Zheng, W., General Strategy for the Growth of CsPbX3 (X = Cl, Br, I) Perovskite Nanosheets from the Assembly of Nanorods. Chemistry of Materials 2018, 30 (11), 3854-3860.
    43. Lovkush, Ravikant, C., Arun, P., Kumar, K., SPR sensitivity of silver nanorods in CsBr-Ag nanocomposite thin films. Materials Research Express 2016, 3 (7), 076403.
    44. Kawano, N., Koshimizu, M., Okada, G., Fujimoto, Y., Kawaguchi, N., Yanagida, T., Asai, K., Scintillating Organic-Inorganic Layered Perovskite-type Compounds and the Gamma-ray Detection Capabilities. Sci Rep 2017, 7 (1), 14754.

    下載圖示
    QR CODE