研究生: |
藍偉瑩 |
---|---|
論文名稱: |
小組互動與概念改變機制之探討─以物質狀態與氣體性質概念為例 |
指導教授: | 楊文金 |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 216 |
中文關鍵詞: | 概念改變 、小組互動 、概念生態 |
論文種類: | 學術論文 |
相關次數: | 點閱:213 下載:52 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在透過基本期望理論與本體分類論的觀點,探討學生科學小組的互動與概念改變的關係。基於此,本研究首先從同儕互動與概念改變相關研究理論進行文獻評析,探討學生在不平等互動中所可能產生的概念改變影響。根據上述結果,本研究以「物質狀態與氣體性質」做為研究概念,利用本體分類論(ontological catagories)將學生概念分為過程(process)、物質(matter)與科學(science)或另有(alternative)三個維度,探討研究對象之概念類型。並設計物質狀態之粒子繪圖(Drawing)與概念圖(Concept Mapping)活動、科學概念閱讀及三個預測─操作─解釋(Prediction─Observation─Explanation,POE)實驗活動等,提供受試者進行不同形式的概念互動機會,以達成概念改變。本研究對象為北縣某私立女中國三學生所形成的五人小組,透過受試小組的話語資料、前後測作答情形,進而分析小組互動與受試者概念改變型式及層次間的關係,並利用凱利方格技術分析(Repertory Grid Technique;RGT)小組概念生態(conceptual ecology)。於此,本研究提出以下結論:
一、 測量小組地位之問卷內容設計,應使用與小組互動情境相關的問題,如此方可真正測量出互動情境下的小組地位結構。本研究結果顯示各成員都對於彼此活動表現的評分並不受人望與學望的影響,因人望與學望皆受到研究情境外其他因素的影響,故不適用於本研究之地位判斷。然而理化課所形成之小組,其活動內容與學科知識相關,故活動進行中仍可發現互動受學望影響之處。
二、 利用凱利方格技術之FOCUS分析可找出小組成員與共識之相似度,了解各成員與概念生態的相似程度。此外,利用Princom技術分析,可清楚看出小組概念生態分布與變動情形。故利用凱利方格技術描述概念生態可獲得理想的結果。
三、 高地位學生的概念改變具有規則性,其另有概念與物質概念經互動後,概念地位降低或概念消失;而過程科學概念經互動後,概念地位提昇或概念生成。高地位學生子概念變動情形並不劇烈,一旦概念欲產生變動,則便朝向較高層次(過程)的概念演進。反之,低地位學生的概念改變較混亂,其另有概念與物質概念經互動後,概念地位可能提昇;而過程科學概念經互動後,概念地位降低,且低地位者之概念增減是隨意的。地位高低確實對於概念的發展有重大影響,高地位者不僅擁有較多的行動機會,同時擁有學會高層次科學概念的機會;然而低地位學生不僅無法獲得平等的學習機會,甚至連建構正確知識的機會也被奪去。
四、 高地位學生並非擁有較高層次的概念,如本研究之低地位學生─尹,其概念類型於前測時是最接近過程科學概念,然而互動時由於概念生態中概念豐富,故低地位學生概念亦受高地位學生影響而有增生許多物質概念。高地位學生的概念無論概念層次高低,都不易受其他人影響。
五、 共識概念生態變動方向與高學望地位者變動趨勢相似,而共識概念移動方向常與學望地位低者相反。受忽略者對於活動參與最少,因此其概念鮮少提出與人互動,故其概念變動方向亦與眾人不同。
六、 互動的品質影響著概念改變的情形。高學望學生互動的「質」最佳,因而引起正向的概念改變;反之,低地位與低學望的學生,無法有效掌握活動的進行與參與概念互動,因此概念改變情形較不理想。
This study explores the relationships between students' science group interactions and their conceptual ecology changes under the perspectives of the Expectation States Theory and Chi's ontological categories. The "matter states and gas properties" of Junior high science curriculum was selected as research topic, and students' conceptions were classified into three categories in terms of Chi's theory, that is, "process", "matter'' and "scientific/alternative". Five group discussion activities were designed, including "particle drawing of matter state and conceptual mapping", "science text reading", and three POEs (prediction-observation- explanation). A group of five students was formed in a private junior high school in Taipei County. They were selected as participants according to their academic statuses and the nature of their conceptions of the research topic. Before and after the group activities, pre- and post-tests, were administered respectively. The data was analyzed by FOCUS and PRINCOM of the RGT (Repertory Grid Technique). Major finding are as follows:
1. The questions in the questionnaire using to measure the group statuses should be designed in terms of group interaction so that they can truly measure the group status structure under group interaction. This study shows that when grading one another , students are not influenced by peer statuses or academic statuses in their class. Since these two statuses are somehow affected by other factors , they are not suitable in the present research. However, the group activities are related to Physics and Chemistry, so there is influence from academic status was observed in group activities.
2. The RGT is an effective tool for investigating student’s and group’s conceptual ecologies, where FOCUS is helpful in analyzing similarities of students’ conceptual ecologies as well as group members and their knowledge backgrounds. In addition, PRINCOM helps to see clearly the spread of group conceptual ecologies and their changes. As a result, an ideal conclusion of describing conceptual ecologies can be obtained through RGT.
3. The conceptual change of high-statuses students is regular. After group interactions, the statuses of their “matter” and “alternative” conceptions were lowered down or disappeared. On the other hand, their “process” conceptions were enhanced or generated. On the contrary, lowstatuses students’ conceptual changes are relative chaos. The ecological statuses of their “matter” and “alternative” conceptions may be raised while the “process” ones lowered. Students’ statuses do have an effect on their conceptual developments. High status students possess more action opportunities to learn higher science conceptions, and low status students do not have equal opportunities to learn, they even are deprived of chances of constructing correct knowledge.
4. High-status students do not necessarily own a higher status conceptions. Take a low-statuses student—Yiin for example. In this research, this student’s conceptions is most close to the “process” category in pre-test, but low-status students are more likely affected by high-status students and generate many “matter” conceptions. Yet no matter the hierarchy of their conception is in a higher level or a lower one, high status students are not easily affected.
5. The change of group’s conceptual ecology is similar to the change of high-academic status students and is opposite to the low-academic ones. The ignored do not take part in activities eagerly or frequently; therefore, they seldom interact with others by presenting their conceptions. As a result, their conceptual change is in a different direction.
6. The quality of interactions affects conceptual change. The high-academic status students have the best interaction quality, and this leads to a positive conceptual change. On the contrary, , low-academic status students cannot control the activity processes effectively or take part in conceptual interaction actively, so they are in a poor condition of conceptual change.
中文部分
1. 李英明(1989):科學社會學。桂冠圖書公司。
2. 李世勳(1999):高中學生的辯護與反駁之研究─偽氣體理論。國立高雄師範大學科學教育研究所碩士論文。(未出版)
3. 邱美虹(2000a)。概念改變的省思與啟示。科學教育學刊。第八卷第一期,頁1-34。
4. 邱美虹(2000b)。國民教育階段九年一課程綱要「自然與科技」領域中「自然科學」課程綱要之評介。科學教育月刊,231,頁20-27。
5. 邱美虹、翁雪琴(1995)。國三學生學習四季成因的影響。科學教育學刊,第3卷,第一期,頁23-68。
6. 邱美虹、陳英嫻(1995)。月相盈虧之概念改變。師大學報,第40期,頁511-547。
7. 邱旻昇(1999):從期望地位的觀點探討學生在科學小組中互動的平等性。國立台灣師範大學科學教育研究所碩士論文。(未出版)
8. 洪振方(1987):學生空氣體積及壓力之粒子模型概念與推理能力之相關研究。國立台灣師範大學化學研究所碩士論文。(未出版)
9. 高淑芬(1997)。類比對國二學生科學概念學習之影響,國立台灣師範國立台灣師範大學科學教育研究所碩士論文。
10. 許良榮(1998)。 本體論在科學學習的意涵。 國教輔導,第37卷第一期,頁17、18。
11. 陳雅芬(2001):以凱利方格法探討學生對於氣體的概念理解。國立台灣師範大學科學教育研究所碩士論文。(未出版)
12. 陳奎喜主編(1998):現代教育社會學。師大書苑。
13. 張家銘譯(1996):社會學理論的結構。台北,桂冠圖書公司,第二版。
14. 張靜嚳(1995):何謂建構主義?,建構與教學,第三期。
15. 曾守恆(1997):「同儕科學家意象」對科學概念合理性判斷的影響。國立台灣師範大學科學教育研究所碩士論文。(未出版)
16. 黃光國(1995):知識與行動─中華文化傳統的社會心理詮釋。台北:心理。
17. 黃俊儒(2000):從社會互動與認知投入的觀點探討理化實驗課中學習機會之分布。國立台灣師範大學科學教育研究所博士論文。(未出版)
18. 黃寶鈿、黃湘武(1985):學生空氣概念:粒子性質及動力平衡。七十四年科學教育學術研討會論文彙編。
19. 楊文金(1993)。多重現實與電學概念理解研究。科學教育學刊。第一卷第二期,頁135-160。
20. 楊文金(1998):『同儕科學家意像』對訊息合理性判斷的影響分析。師大學報,43(1),p1-p17。
21. 劉嘉茹(2000)。 以研究綱領與本體分類論的觀點探究概念改變機制之 研究。國立台灣師範大學科學教育研究所博士論文。(未出版)
22. 葉蓉樺(2000):國小高年級自然科學習小組之結構及其互動模式研究。國立台灣師範大學科學教育研究所博士論文。(未出版)
23. 蔣佳玲(1999):從權力的觀點探討學生小組互動中科學知識的建構。國立彰化師範大學科學教育研究所博士論文。(未出版)
24. 鄭志鵬(1998):探究高中學生之氣體概念及相關粒子概念。國立台灣師範大學化學研究所碩士論文。(未出版)
25. 藍偉瑩、楊文金(2001):小組地位與科學學習的探討─一個國小五年級自然科教室的觀察。九十年科學教育學術研討會。(未出版)
英文部分
26. Aronson, E., Wilson,T. D.,& Akert, R., M., 1994. Social Psychology. New York: HarperCollins College Publishers.(李茂興,余伯泉譯(1995)。社會心理學。台北:揚智文化事業股份有限公司。)
27. Bianchini, J. A. (1997). Where knowledge construction, equity and context interact: student learning of science in small groups. Journal of Research in Science Teaching, 34, 1039-1065.
28. Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Implications for learning and discovery in science. In R. Giere (Ed.), Cognitive models of science: Minnesota studies in the philosophy of science (pp.129-186.) Minneapolis: University of Minnesota Press.
29. Chi, M. T. H. (1997). Creativity: Shifting across ontological categories flexibly. In T. B. Ward, S. M. Smith, & J. Vaid (Eds.), Creative thought: An investigation of conceptual structures and processes (pp. 209-234). Washington, DC: American Psychological Association.
30. Chi, M. T. H., Bassok, M. Laewis, M. W., Reimann, P.& Glaser, R. (1989) .Self-explanation: How students study and use examples in learning to solve problems. Cognitie Science, 13, 145-182.
31. Chi, M. T. H.,& VanLehn, K A.(1991).The content of physics self-explanations. The Journal of the Learning Science, 1, 69-105.
32. Chi, M. T. H, deLeew, N, Chiu, M. H., & Lavancher, C.(1994). Eliciting self-explanations improves understanding. Cognitive science, 18, 439-477.
33. Chi, M. T. H., Slotta, J. D., & deLeeuw, N. (1994). From things to processes: A theory of conceptual change for learning science conception, Learning and instruction, 4, 27-43.
34. Christine M. Cunningham, Jenifer V. Helms (1998).Sociology of Science as a Means to a More Authentic: Inclusive Science Education. Journal of Research in Science Teaching, 35, 483-499.
35. Cohen, E. G., Lotan, R. A.(1995a). Producing equal-status interaction in the heterogeneous classroom. American Educational Research Journal, 32, 99-120.
36. Cohen, E. G., Lotan, R. A.(1995b). Working for equity in the heterogeneous classroom. NY:Teacher College.
37. Daron, R. L. (1972). Misconception of Selected Science Concepts Held by Elementary School Students. Journal of Research in Science Teaching, (, 127-137.
38. Driver, R. (1985). Beyond Appearances: The Conservation of Matter Under Physical and Chemical Transformations. In R. Driver, E. Guesne & A. Tiberghien. (eds.) Children’s Indea In Science.(pp145-169). Open University Press.
39. Evinella Alexopoulou(1996), Small-group Discussion in Physics:Peer Interation Modes in Pairs and Fours. Journal of Research in Science Teaching, 33, p1099- 1114.
40. Halldén, O.(1999)Conceptual Change and Contextualization. In W. Schnotz, S. Vosniadou, & M. Carretero(Eds),New Perspecttives on Conceptual Change,53-66.
41. Hewson, P. W. (1981). A conceptual change approach to learning science. European Journal of science Education, 4, 383-396.
42. Hewson, P. W. (1982). A case study of conceptual change in special relativity: The influence of prior knowledge in learning. European Journal of Science Education, 4, 61-78.
43. Hewson, P. W. (1985).The Role of Intellectual Environment in the Origin of Conceptions: An Explanatory Study.
44. Hewson, P. W. & Hewson, M. G. (1992). The status of students’ conceptions. In R. Duit, F. Goldberg, & H. Niedderer (Eds.), Research in Physics Learning: Theoretical issues and empirical studies, 59-73.
45. Kalekin-Fishman, D. (1999). Knowledge, Belief and Opinion: A Sociologist’s View of Conceptual Change. In W. Schnotz, S. Vosniadou, & M. Carretero(Eds),New Perspecttives on Conceptual Change,81-90.
46. Kuhn, T. S.(1962). The Structure of Scientific Revolutions. Chicago: University of Chicago Press. .(程樹德、傅大為、王道還與錢永祥譯(1994)。科學革命的結構。台北:遠流出版事業股份有限公司。)
47. Mulkay, M.(1979).Science and the sociology of knowledge. Lodon: George Allen &Unwin.(蔡振中譯(1991),科學與知識社會學。台北:巨流。)
48. Novick, S. & Nussbaum, J. (1978). Junior High School Pupils’ Understanding of the Particulate Nature of Matter: An Interview Study. Science Education, 62(3),273-281.
49. Novick, S. & Nussbaum, J. (1981). Pupils’ Understanding of the Particulate Nature of Matter: A Cross-Age Study. Science Education, 65(2),187-196.
50. Nunes, T.(1999).Systems of Signs and Conceptual Change. In W. Schnotz, S. Vosniadou, & M. Carretero(Eds),New Perspecttives on Conceptual Change,67-80.
51. Pontecorvo, C. & Girardet, H.(1993) Arguing and Reasoning in Understanding Historical Topics. Cognition and instruction, 11, 365-395
52. Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of scientific conception: toward a theory of conceptual change. Science education, 66(2), 211-227.
53. Richmond, G. & Striley, J. (1996). Making meaning in classroom: social processes in small-group discourse and scientific knowledge building. Journal of Research in Science Teaching, 33, 839-858.
54. Rosenholtz S. J.(1985): Modifying Status Expectations in the Traditional Classroom. In J. Berger & M. Zelditch Jr. (Eds.), Status, Rewards, and Influence: How Expectations Organize Behavior. CA: Jossey-Bass.
55. Rosalind Driver, Hilary Asoko, John Leach, Eduardo Mortimer, Philp Scott (1994). Constructing Scientific Knowledge in the Classroom. Educational Researcher, 23,5-12.
56. Selly, N. J. (1981). Children’s Understanding of Atoms and Molecules,(mimeograph).Kingston: Kingston Polytechnic.
57. Stavy, R.(1990). Children’s Conception of Changes in the State of Matter: from Liquid (or Solid) to Gas. Journal of Research in Science Teaching, 27(3), 247-266.
58. Strike, K. A.,& Posner, G. J. (1992). A Revisionist Theory of Conceptual Change, in R. A. Duschl and R. J. Hamilton (eds.), Philosophy of Science, Cognitive Psychology, and Educational Theory in Practice.State University of New York Press, Albany, NY, 147-176.
59. Taylor, P. (1993). Collaborating to reconstruct teaching: The influence of researcher beliefs. In K. Tovin (Ed.), The Practice of Constructivism in Science Education (pp.267-297). Washington, Dc: AAAS Press.
60. Tyson, L. M., Venville, G. J., Harrison, A. G., & Treagust, D. F. (1996). A multidimensional framework for interpreting conceptual change events in the classroom.
61. Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instructing, 4, 45-69