簡易檢索 / 詳目顯示

研究生: 奧斯比
Carl Osby M. Mariano
論文名稱: 背光發光二極體用之NaK2Li[Li3SiO4]4:Eu2+窄譜帶螢光粉與其優化
Optimization of Phase and Narrow Band Emission of NaK2Li[Li3SiO4]4:Eu2+ for Light-Emitting Diodes Backlighting
指導教授: 胡淑芬
Hu, Shu-Fen
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 104
英文關鍵詞: pc-LEDs, Narrow Band Emission, Backlight Display, UCr4C4 type
DOI URL: http://doi.org/10.6345/NTNU202000187
論文種類: 學術論文
相關次數: 點閱:226下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Phosphor materials with narrowband emission show great importance in the light-emitting diode (LED) industry due to its ability to produce wide color gamut displays and vivid colors in backlighting applications. The search for cheaper synthesis methods and highly efficient phosphors are of great importance nowadays. Here, we report a green-emitting narrowband alkali-lithosilicate phosphor with the composition of NaK2Li[Li3SiO4]4 doped with Eu2+ which has a full width at half maximum of ~43 nm and peak emission wavelength of 530 nm with external quantum efficiency reaching up to ~38% after post-treatment which is higher than the conventional green phosphor. The phosphor was synthesized by using solid-state metathesis reactions. The starting precursors were mixed and ground in an agate mortar until homogenous then put inside a tube furnace for sintering. The bulk powder phosphor was then characterized using X-ray powder diffraction pattern, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), photoluminescence and photoluminescence excitation, thermal properties, decay time and luminescence at different pressure and temperature were measured and analyzed. The phosphors were also subjected to LED package data. According to the results, the phosphor’s color gamut covers 100.9% of the standard National Television System Committee (NTSC).

    Chapter 1. Introduction 1 1.1. Humans and light 1 1.1.1. A brief history of electric lighting 2 1.1.2. Light-emitting diode (LED) 3 1.1.3. Types of white LEDs 5 1.2. Inorganic phosphors 9 1.2.1. Host lattice 10 1.2.2. Activator 11 1.2.3. Nephelauxetic effect 12 1.2.4. Crystal field splitting 13 1.2.5. Thermal stability 15 1.3. Narrowband phosphors 16 1.3.1. Narrowband green β-SiAlON:Eu2+ 17 1.3.2. UCr4C4 phosphors 18 1.3.2.1. Nitride and oxynitrides phosphors 22 1.3.2.2. RbNa3[Li3SiO4]4:Eu2+ 28 1.3.2.3. Rb2Na2[Li3SiO4]4:Eu2+ 29 1.3.2.4. RbNa2K[Li3SiO4]4:Eu2+ and CsNa2K[Li3SiO4]4:Eu2+ 31 1.3.2.5. RbKLi2[Li3SiO4]4:Eu2+ 33 1.3.2.6. CsNaKLi[Li3SiO4]4:Eu2+ 36 1.3.2.7. CsNaRbLi[Li3SiO4]4:Eu2+ 38 1.3.2.8. Na2K2[Li3SiO4]4:Eu2+ 39 1.3.2.9. Rb2Li2[Li3SiO4]4:Eu2+ 41 1.4 Research Objectives and Motivation 43 Chapter 2. Phase characterization and luminescence measurements 46 2.1 Synthesis 47 2.1.1 Materials and reaction conditions 47 2.1.2 Solid-state reaction 47 2.2 Characterization 49 2.2.1 Crystal structure analysis 50 2.2.1.1 X-ray powder diffraction (XRD) 51 2.2.1.2 Synchrotron X-ray diffraction (SXRD) 53 2.2.1.3 Neutron powder diffraction 55 2.2.1.4 Rietveld refinements 57 2.2.2 Photoluminescence (PL) 60 2.2.2.1 Temperature-dependent photoluminescence (TDPL) 63 2.2.2.2 Pressure-dependent luminescence 64 2.2.2.3 Lifetime measurement 65 2.2.2.4 Quantum efficiency (QE) 67 2.2.3 Scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDX) 69 2.2.4 Light-emitting diode packaging 70 Chapter 3. Classification of the Alkali-Cluster, Optimization of Phase, and Narrowband Emission of NaK2Li[Li3SiO4]4:Eu2+ for the Application in Backlighting Light-Emitting Diodes 72 3.1 Introduction 72 3.2 Optimization of phase and performance 74 3.3 Characterizations 81 Chapter 4: Conclusions 97 References: 98

    (1) Woodward, H.; Evans, M. Electric Light. 1874.

    (2) Jones, B., The Royal Institution, Its Founder and its First Professors. London, 2011.

    (3) Alva, E. T. Electric Lamp. 1880.

    (4) Inman, G. E. Method and Apparatus for Flashing Electric Discharge Devices. 1934.

    (5) Laskai, L.; Enjeti, P. N.; Pitel, I. J. White-Noise Modulation of High-Frequency High-Intensity Discharge Lamp Ballasts. IEEE Trans. Appl. Indus. 1998, 34, 597-605.

    (6) Holonyak, N.; Bevacqua, S. F. Coherent Light Emission From Ga(As1-x-Px) Junctions. Appl. Phys. Lett. 1962, 1, 82-83.

    (7) Heber, J. Nobel Prize 2014: Akasaki, Amano & Amp; Nakamura. Nat. Phys. 2014, 10, 791.

    (8) Smet, P. F.; Parmentier, A. B.; Poelman, D. Selecting Conversion Phosphors for White Light-Emitting Diodes. J. Electrochem. Soc. 2011, 158, 37-54.

    (9) Smith, T.; Guild, J., The C.I.E. Colorimetric Standards and Their Use. 1931, 33, 73.

    (10) Höppe, H. A. Recent Developments in the Field of Inorganic Phosphors. Angew. Chem. 2009, 48, 3572-3582.

    (11) Jüstel, T.; Nikol, H.; Ronda, C. New Developments in the Field of Luminescent Materials for Lighting and Displays. Angew. Chem. 1998, 37, 3084-3103.

    (12) Xia, Z.; Xu, Z.; Chen, M.; Liu, Q. Recent Developments in the New Inorganic Solid-State LED Phosphors. Dalton Trans. 2016, 45, 11214-11232.

    (13) McKittrick, J.; Hannah, M. E.; Piquette, A.; Han, J. K.; Choi, J. I.; Anc, M.; Galvez, M.; Lugauer, H.; Talbot, J. B.; Mishra, K. C. Phosphor Selection Considerations for Near-UV LED Solid State Lighting. ECS J. Solid State Sci. Technol. 2013, 2, R3119-R3131.

    (14) Tsai, Y. T.; Chiang, C. Y.; Zhou, W.; Lee, J. F.; Sheu, H. S.; Liu, R. S. Structural Ordering and Charge Variation Induced by Cation Substitution in (Sr,Ca)AlSiN3:Eu2+ Phosphor. J. Am. Chem. Soc. 2015, 137, 8936-8939.

    (15) Huang, W. Y.; Yoshimura, F.; Ueda, K.; Shimomura, Y.; Sheu, H. S.; Chan, T. S.; Chiang, C. Y.; Zhou, W.; Liu, R. S. Chemical Pressure Control for Photoluminescence of MSiAl2O3N2. Chem. Mater. 2014, 26, 2075-2085.

    (16) Li, G.; Tian, Y.; Zhao, Y.; Lin, J. Recent Progress in Luminescence Tuning of Ce3+ and Eu2+-Activated Phosphors for pc-WLEDs. Chem. Soc. Rev. 2015, 44, 8688-8713.

    (17) George, N. C.; Denault, K. A.; Seshadri, R. Phosphors for Solid-State White Lighting. Annu. Rev. Mater. Res. 2013, 43, 481-501.

    (18) Jørgensen, C. K. The Nephelauxetic Series. Prog. Inorg. Chem. 1962.

    (19) Van Vleck, J. H. Theory of the Variations in Paramagnetic Anisotropy Among Different Salts of the Iron Group. Phys. Rev. 1932, 41, 208-215.

    (20) Craig, D. P.; Maccoll, A.; Nyholm, R. S.; Orgel, L. E.; Sutton, L. E. Chemical bonds Involving d-orbitals. Part I. J. Chem. Soc. 1954, 332-353.

    (21) Yang, P.; Yu, X.; Yu, H.; Jiang, T.; Zhou, D.; Qiu, J. Effects of Crystal Field on Photoluminescence Properties of Ca2Al2SiO7:Eu2+ Phosphors. J. Rare. Earth. 2012, 30, 1208-1212.

    (22) Dorenbos, P. 5d-level energies of Ce3+ and the Crystalline Environment. I. Fluoride Compounds. Phys. Rev. 2000, 62, 15640-15649.

    (23) Chen, L.; Chu, C. I.; Liu, R. S. Improvement of Emission Efficiency and Color Rendering of High-Power LED by Controlling Size of Phosphor Particles and Utilization of Different Phosphors. Microelectron. Reliab. 2012, 52, 900-904.

    (24) Li, S.; Xie, R.-J.; Takeda, T.; Hirosaki, N. Critical Review—Narrow-Band Nitride Phosphors for Wide Color-Gamut White LED Backlighting. ECS J. Solid State Sci. Technol. 2018, 7, 3064-3078.

    (25) Sabnis, R. W. Color Filter Technology for Liquid Crystal Displays. DISPLAYS. 1999, 20, 119-129.

    (26) Hirosaki, N.; Xie, R.-J.; Kimoto, K.; Sekiguchi, T.; Yamamoto, Y.; Suehiro, T.; Mitomo, M. Characterization and Properties of Green-Emitting β-SiAlON:Eu2+ Powder Phosphors for White Light-Emitting Diodes. Appl. Phys. Lett. 2005, 86, 211905.

    (27) Zhang, X.; Fang, M. H.; Tsai, Y. T.; Lazarowska, A.; Mahlik, S.; Lesniewski, T.; Grinberg, M.; Pang, W. K.; Pan, F.; Liang, C.; Zhou, W.; Wang, J.; Lee, J. F.; Cheng, B. M.; Hung, T. L.; Chen, Y. Y.; Liu, R. S. Controlling of Structural Ordering and Rigidity of β-SiAlON:Eu Through Chemical Cosubstitution to Approach Narrow-Band-Emission for Light-Emitting Diodes Application. Chem. Mater. 2017, 29, 6781-6792.

    (28) de Jong, M.; Seijo, L.; Meijerink, A.; Rabouw, F. T. Resolving the Ambiguity in the Relation Between Stokes Shift and Huang–Rhys Parameter. Phys. Chem. Chem. Phys. 2015, 17, 16959-16969.

    (29) Przybylińska, H.; Ma, C.-G.; Brik, M. G.; Kamińska, A.; Szczepkowski, J.; Sybilski, P.; Wittlin, A.; Berkowski, M.; Jastrzębski, W.; Suchocki, A. Evidence of Multicenter Structure of Cerium Ions in Gadolinium Gallium Garnet Crystals Studied by Infrared Absorption Spectroscopy. Phys. Rev. 2013, 87, 045114.

    (30) Schmidt, P. J.; Hintze, F. C.; Pust, P. A. H.; Weiler, V.; Hecht, C. S.; Schmiechen, S. F.; Schnick, W.; Wiechert, D. U. Phosphors, Such as New Narrow-Band Red Emitting Phosphors for Solid State Lighting. US 9,546,319, 2017/1/17, 2017.

    (31) Nowitzki, B.; Hoppe, R. Oxides of Type A [(TO)n]: NaLi3SiO4, NaLi3GeO4, and NaLi3TiO4. Chem. Inform. 1986, 23, 217-230.

    (32) Pust, P.; Weiler, V.; Hecht, C.; Tücks, A.; Wochnik, A. S.; Henß, A.-K.; Wiechert, D.; Scheu, C.; Schmidt, P. J.; Schnick, W. Narrow-band Red-emitting Sr[LiAl3N4]:Eu2+ as a Next-Generation LED-phosphor Material. Nat. Mater. 2014, 13, 891-896.

    (33) Schmiechen, S.; Schneider, H.; Wagatha, P.; Hecht, C.; Schmidt, P. J.; Schnick, W. Toward New Phosphors for Application in Illumination-Grade White Pc-LEDs: the Nitridomagnesosilicates Ca[Mg3SiN4]:Ce3+, Sr[Mg3SiN4]:Eu2+, and Eu[Mg3SiN4]. Chem. Mater. 2014, 26, 2712-2719.

    (34) Pust, P.; Hintze, F.; Hecht, C.; Weiler, V.; Locher, A.; Zitnanska, D.; Harm, S.; Wiechert, D.; Schmidt, P. J.; Schnick, W. Group (III) Nitrides M[Mg2Al2N4](M= Ca, Sr, Ba, Eu) and Ba[Mg2Ga2N4] Structural Relation and Nontypical Luminescence Properties of Eu2+ Doped Samples. Chem. Mater. 2014, 26, 6113-6119.

    (35) Pust, P.; Wochnik, A. S.; Baumann, E.; Schmidt, P. J.; Wiechert, D.; Scheu, C.; Schnick, W. Ca[LiAl3N4]:Eu2+ A Narrow-Band Red-Emitting Nitridolithoaluminate. Chem. Mater. 2014, 26, 3544-3549.

    (36) Fang, M. H.; Mahlik, S.; Lazarowska, A.; Grinberg, M.; Molokeev, M. S.; Sheu, H. S.; Lee, J. F.; Liu, R. S. Structural Evolution and Neighbor‐Cation Control of Photoluminescence in Sr(LiAl3)1-x(SiMg3)xN4:Eu2+ Phosphor. Angew. Chem. 2019, 58, 7767-7772.

    (37) Hu, W. W.; Ji, W. W.; Khan, S. A.; Hao, L. Y.; Xu, X.; Yin, L. J.; Agathopoulos, S. Preparation of Sr1−xCaxLiAl3N4:Eu2+ Solid Solutions and Their Photoluminescence Properties. J. Am. Ceram. Soc. 2016, 99, 3273-3279.

    (38) Wagatha, P.; Weiler, V.; Schmidt, P. J.; Schnick, W. Tailoring Emission Characteristics: Narrow-Band Red Luminescence from SLA to CaBa[Li2Al6N8]:Eu2+. Chem. Mater. 2018, 30, 7885-7891.

    (39) Fang, M. H.; Meng, S. Y.; Majewska, N.; Lesniewski, T.; Mahlik, S.; Grinberg, M.; Sheu, H. S.; Liu, R. S. Chemical Control of SrLi(Al1-xGax)3N4:Eu2+ Red Phosphor at Extreme Condition for the Application in Light-Emitting Diodes. Chem. Mater. 2019, 31, 4614-4618.

    (40) Hoerder, G. J.; Seibald, M.; Baumann, D.; Schröder, T.; Peschke, S.; Schmid, P. C.; Tyborski, T.; Pust, P.; Stoll, I.; Bergler, M.; Patzig, C.; Reißaus, S.; Krause, M.; Berthold, L.; Höche, T.; Johrendt, D.; Huppertz, H. Sr[Li2Al2O2N2]:Eu2+—A High Performance Red Phosphor to Brighten the Future. Nat. Commun. 2019, 10, 1824.

    (41) Hoerder, G. J.; Peschke, S.; Wurst, K.; Seibald, M.; Baumann, D.; Stoll, I.; Huppertz, H. SrAl2-xLi2+xO2+2xN2-2x:Eu2+ (0.12 ≤ x ≤ 0.66) — Tunable Luminescence in an Oxonitride Phosphor. Inorg. Chem. 2019, 58, 12146-12151.

    (42) Dutzler, D.; Seibald, M.; Baumann, D.; Ruegenberg, F.; Huppertz, H. Synthetic and Structural Investigations on the System Na1-xEux[Li3‐2xSi1‐xAl3xO4‐4xN4x]. Eur. J. Inorg. Chem. 2019, 2019, 2958-2963.

    (43) Seibald, M.; Baumann, D.; Fiedler, T. I. M.; Lange, S.; Huppertz, H.; Dutzler, D.; Schroeder, T.; Bichler, D.; Plundrich, G.; Peschke, S.; Hoerder, G.; Achrainer, G.; Wurst, K. Luminophore And Process For Producing A Luminophore. WO 2018/029299 A1, 2017/08/10, 2018.

    (44) Liao, H.; Zhao, M.; Molokeev, M. S.; Liu, Q.; Xia, Z. Learning from a Mineral Structure Toward an Ultra‐Narrow‐Band Blue‐Emitting Silicate Phosphor RbNa3(Li3SiO4)4:Eu2+. Angew. Chem. 2018, 130, 11902-11905.

    (45) Liao, H.; Zhao, M.; Zhou, Y.; Molokeev, M. S.; Liu, Q.; Zhang, Q.; Xia, Z. Polyhedron Transformation Toward Stable Narrow‐Band Green Phosphors for Wide‐Color‐Gamut Liquid Crystal Display. Adv. Funct. Mater. 2019, 29, 1901988.

    (46) Zhao, M.; Zhou, Y.; Molokeev, M. S.; Zhang, Q.; Liu, Q.; Xia, Z. Discovery of New Narrow‐Band Phosphors With the UCr4C4‐Related Type Structure by Alkali Cation Effect. Adv. Opt. Mater. 2019, 7, 1801631.

    (47) Zhao, M.; Liao, H.; Molokeev, M. S.; Zhou, Y.; Zhang, Q.; Liu, Q.; Xia, Z. Emerging Ultra-Narrow-Band Cyan-Emitting Phosphor for White LEDs with Enhanced Color Rendition. Light-Sci. Appl. 2019, 8, 38.

    (48) Zhao, M.; Liao, H.; Ning, L.; Zhang, Q.; Liu, Q.; Xia, Z. Next‐Generation Narrow‐Band Green‐Emitting RbLi(Li3SiO4)2:Eu2+ Phosphor for Backlight Display Application. Adv. Mater. 2018, 30, 1802489.

    (49) Dutzler, D.; Seibald, M.; Baumann, D.; Philipp, F.; Peschke, S.; Huppertz, H. RbKLi2[Li3SiO4]4:Eu2+ an Ultra Narrow-Band Phosphor. Z. Naturforsch. B. 2019, 74, 535-546.

    (50) Wang, W.; Tao, M.; Liu, Y.; Wei, Y.; Xing, G.; Dang, P.; Lin, J.; Li, G. Photoluminescence Control of UCr4C4-Typed Phosphors with Superior Luminous Efficiency and High Color Purity via Controlling Site-Selection of Eu2+ Activators. Chem. Mater. 2019, 31, 9200-9210.

    (51) Fang, M. H.; Leaño, J. L.; Liu, R. S. Control of Narrow-Band Emission in the Phosphor Materials for the Application in Light-Emitting Diodes. ACS Energy Lett. 2018, 3, 2573-2586.

    (52) Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. 1976, 32, 751-767.

    (53) Ginzburg, V.; Syrovatskii, S. Cosmic Magnetobremsstrahlung (Synchrotron Radiation). Annu. Rev. Astron. Astrophys. 1965, 3, 297-350.

    (54) Kunz, C. Synchrotron Radiation. CERN Courier. 1974, 155-166.

    (55) Bacon, G. E., Neutron diffraction. 3rd ed.; Clarendon Press: Oxford, 1976; 33, 636.

    (56) Jena, A.; Lee, P.-H.; Pang, W. K.; Hsiao, K.-C.; Peterson, V. K.; Darwish, T.; Yepuri, N.; Wu, S.-H.; Chang, H.; Liu, R. S. Monitoring the Phase Evolution in LiCoO2 Electrodes During Battery Cycles Using in-situ Neutron Diffraction Technique. J. Chin. Chem. Soc. 2019, 1-9.

    (57) Shirane, G.; Shapiro, S.; Tranquada, J., Neutron Scattering with a Triple-Axis Spectrometer: Basic Techniques. Cambridge University Press: Cambridge, 2002.

    (58) Australian Nuclear Science and Technology Organization- Australian Center for Neutron Science ECHIDNA - High-Resolution Powder Diffractometer. http://www.ansto.gov.au/ResearchHub/OurInfrastructure/ACNS/Facilities/Instruments/Echidna/index.htm (accessed December 18, 2019).

    (59) Klug, H. P.; Alexander, L. E., X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. Wiley-VCH Verlag GmbH & Co. KGaA: New York, 1974, 79, 553.

    (60) Toby, B. H. R Factors in Rietveld Analysis: How Good is Good Enough? Powder Diffr. 2012, 21, 67-70.
    (61) Waychuns, G. A. Luminescence Spectroscopy. Rev. Mineral. Geochem. 2014, 78, 175-217.

    (62) Compedium of Chemical Terminologies. 2006, 2.

    (63) Horiba http://www.horiba.com/fileadmin/uploads/Scientific/Downloads/UserArea/Fluorescence/Legacy/Total_FluoroMax3_Manual.pdf. (accessed December 18, 2019).

    (64) Edinburgh Instruments FLS920. https://www.edinst.com/products/fls920-upgrades/ (accessed December 18, 2019).

    (65) Berezin, M. Y.; Achilefu, S. Fluorescence Lifetime Measurements and Biological Imaging. Chem. Rev. 2010, 110, 2641-2684.

    (66) Park, S. H.; Yoon, H. S.; Boo, H. M.; ang, H. G.; Lee, K. H.; Im, W. B. Efficiency and Thermal Stability Enhancements of Sr2SiO4:Eu2+ Phosphor via Bi3+ Codoping for Solid-State White Lighting. Jpn. J. Appl. Phys. 2012, 51, 022602.

    (67) Zhang, X.; Fang, M. H.; Tsai, Y. T.; Lazarowska, A.; Mahlik, S.; Lesniewski, T.; Grinberg, M.; Pang, W. K.; Pan, F.; Liang, C.; Liu, R. S. Controlling of Structural Ordering and Rigidity of β-SiAlON: Eu through Chemical Cosubstitution to Approach Narrow-Band-Emission for Light-Emitting Diodes Application. Chem. Mater. 2017.

    (68) Pust, P.; Hintze, F.; Hecht, C.; Weiler, V.; Locher, A.; Zitnanska, D.; Harm, S.; Wiechert, D.; Schmidt, P. J.; Schnick, W. Group (III) Nitrides M[Mg2Al2N4](M= Ca, Sr, Ba, Eu) and Ba[Mg2Ga2N4] Structural Relation and Nontypical Luminescence Properties of Eu2+ Doped Samples. Chem. Mater. 2014, 26, 6113-6119.

    (69) Fang, M. H.; Mahlik, S.; Lazarowska, A.; Grinberg, M.; Molokeev, M. S.; Sheu, H. S.; Lee, J. F.; Liu, R. S. Structural Evolution and Neighbor‐Cation Control of Photoluminescence in Sr(LiAl3)1-x(SiMg3)xN4:Eu2+ Phosphor. Angew. Chem. Int. Ed. 2019, 58, 7767-7772.

    (70) Wang, L.; Kong, X.; Li, P.; Ran, W.; Lan, X.; Chen, Q.; Shi, J. Narrow-Band Green Emission of Eu2+ in a Rigid Tunnel Structure: Site Occupations, Barycenter Energy Calculations and Luminescence Properties. Inorganic Chemistry Frontiers 2019, 6, 3604-3612.

    (71) Ruegenberg, F.; Seibald, M.; Baumann, D.; Peschke, S.; Schmid, P. C.; Huppertz, H. Novel Double Band Emitter with Ultra‐Narrow Band Blue and Narrow Band Green Luminescence. Chemistry–A European Journal 2019, doi.org/10.1002/chem.201904526.

    (72) Tsai, Y. T.; Nguyen, H. D.; Lazarowska, A.; Mahlik, S.; Grinberg, M.; Liu, R. S. Improvement of the Water Resistance of a Narrow‐Band Red‐Emitting SrLiAl3N4:Eu2+ Phosphor Synthesized under High Isostatic Pressure through Coating with an Organosilica Layer. Angew. Chem. Int. Ed. 2016, 55, 9652-9656.

    (73) Di Bartolo, B.; Armagan, G., Spectroscopy of Solid-State Laser-Type Materials. Springer Science & Business Media: 2012; Vol. 30.

    無法下載圖示 本全文未授權公開
    QR CODE