研究生: |
許名智 Ming-Jyh Sheu |
---|---|
論文名稱: |
過鋰氫氧化物結構的理論計算研究 Ab Initio Theoretical Calculation to Study the Formations, |
指導教授: |
何嘉仁
Ho, Jia-Jen |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
畢業學年度: | 81 |
語文別: | 中文 |
論文頁數: | 0116 |
中文關鍵詞: | 理論計算 |
英文關鍵詞: | Ab Initio |
論文種類: | 學術論文 |
相關次數: | 點閱:266 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用 Ab Initio 理論計算探討 Li3OH 及 Na3OH 分子的生成及穩定性,
發現 Li3OH 分子有三種異構物,能量由低至高依次為 C2VⅡ、C2VⅠ、C3
V,Li2 分子與 LiOH 分子碰撞可生成 Li3OH 分子的 C2VⅠ結構,同時放
出 48.36 kcal/mol 的熱量, LiH 分子與 Li2O 分子碰撞可生成 C2VⅡ
結構,同時放出 59.30 kcal/mol 的熱量,由 C2VⅠ 結構轉換至 C3V 結
構僅須克服 9.89 kcal/mol 的能量障礙,而由 C3V 結構轉換至 C2VⅡ結
構則須克服 21.99 kcal/mol 的能量障礙,同樣的情形也存在於 Na3OH
分子,但最大的不同是 Na3OH 分子三種異構物的能量高低順序恰與 Li3
OH 分子相反。 Li4O 及 Na4O 分子均具有 Td 及 C2V 兩種結構,且都是
以 Td 結構較穩定,Li4O 分子的 Td 結構比 C2V 結構穩定 15.17 kcal/
mol,而 Na4O 分子的 Td 結構比 C2V 結構穩定 18.13 kcal/mol,Li4O
分子由 Td 結構轉換至 C2V 結構的活化能為 17.77 kcal/mol,而 Na4O
分子由 Td 結構轉換至 C2V 結構的活化能為 19.37 kcal/mol,兩者轉換
過程中的過渡狀態均是以氧原子位於頂點的 C3V 傘狀結構。 Li4OH 分子
有三種穩定異構物,其中能量最低的結構是以 O-H 為主軸的 C2V 對稱結
構,此結構可視為 H 原子加在 Li4O (Td) 的 Li-O-Li 角平分線上,但
氫原子不與氧原子鍵結,而與鄰接的兩個鋰原子形成 Li-H-Li 三中心鍵
,Li4OH 分子的 HOMO 是 A1 對稱,此軌域提供鋰原子間的過金屬鍵,
將 Li4OH分子游離一電子成為 Li4OH+ 離子的游離能為 91.96 kcal/mol
,Li4OH+ 離子也是 C2V 對稱,但由於過金屬鍵的消失,Li-Li鍵長由
Li4OH 分子中的 2.478 A 增至 Li4OH+ 離子中的 2.985 A 。
The production of Li3OH molecule due to the collision process
of Li2 and LiOH or LiH and Li2O were investigated theoretically.
The association reaction energies for these processes are
-48.36 kcal/mol and -59.30 kcal/mol each other. There are
three stable structures ( C3V, C2VⅠ and C2VⅡ) for Li3OH
molecule.The global minimum structure has C2V symmetry with H
and two Li atoms forming a 3-centered bond. The energy barrier
of inter-conversion between C2VⅠ and C3V structure is 9.89
kcal/mol. The energy barrier of inter-conversion between C3V
and C2VⅡ structure is 21.99 kcal/mol. And the transition state
is also determined. There are two stable structures (Td and C2
V) for Li4O molecule and the Td structure is calculated to be
lower in energy. The energy barrier of inter-conversion
between these two structures is calculated to be 17.77 kcal/mol
and the transition state is also determined. Fourteen possible
Li4O structures Have been studied. Among them the structure
with the lowest energy has C2V symmetry with H and two Li
atoms forming a 3-centered bond. The O-Li-H-Li stays in the
same plane with O-H axis bisecting the Li-O-Li angle. The two
Li-O-Li angles are 90.5o and 76o which are distored quite a lot
from Li4O (Td) structure if we considered Li4OH being formed
from Li4O (Td) + H . The HOMO of ground state Li4OH has A1
symmetry. It contributes considerable metal-metal bonding
between Li-Li bonds. The ionization energy ( Li4OH → Li4OH+ )
is 91.96 kcal/mol. The ground state structure of Li4OH+ also
has C2V symmetry. However; the metal-metal bonding between Li-
Li was weakened drastically which makes the Li-Li bond length
increase from 2.478 A in Li4OH to 2.985 A in Li4OH+. Other
possible structures of Li4OH and their ionization counterpart
( Li4OH+ ) are also being carefully studied.
The production of Li3OH molecule due to the collision process