研究生: |
陳聖 CHEN, SHENG |
---|---|
論文名稱: |
使用射頻電漿輔助化學束磊晶成長氮化銦磊晶材料於表面氮化處理矽(111)基板之研究 Investigation of Epi-InN Materials Grown on Surface Nitride Si (111) Substrate by RF-CBE |
指導教授: |
程金保
Cheng, Chin-Pao 陳維鈞 Chen, Wei-Chun |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 氮化矽 、氮化銦 、磊晶薄膜 、RF-CBE |
英文關鍵詞: | silicon nitride, indium nitride, epi-film, RF-CBE |
DOI URL: | http://doi.org/10.6345/NTNU201901048 |
論文種類: | 學術論文 |
相關次數: | 點閱:147 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用射頻電漿輔助化學束磊晶系統於矽(111)基板上製備氮化矽緩衝層,針對製備緩衝層之電漿氮氣流量比、氮化時間進行研究,探討氮化銦於不同條件之緩衝層生長其結構、結晶性及電子遷移率變化。研究結果顯示,在實驗條件下矽(111)基板表面會產生氮化矽層(SixNy layer),隨著氮化時間或流量增加,表面會形成β-Si3N4,有助於纎鋅礦結構氮化銦磊晶生長。透過X光繞射分析證實經過表面氮化處理的試片皆能成長氮化銦磊晶。本研究再進行製備氮化氮化銦/氮化矽雙緩衝層於矽(111)基板,並針對氮化銦磊晶薄膜之特性進行探討,研究結果證實,使用雙緩衝層技術之氮化銦磊晶薄膜能提高結晶性及電性,隨著製備氮化矽層時氮氣流量及氮化時間增加,結晶性及電性均有所提升。
In this research, radio frequency plasma assisted molecular beam epitaxy system was used to grow SixNy buffer layer on silicon (111) substrate. The flow ratio of growth the buffer layer and the nitriding time have been studied. The structure, crystallinity and electron mobility of indium nitride grown under different treatment buffer were investigated. SixNy layer was produced on the surface of the silicon (111) substrate under experimental conditions. With the increasing of the nitriding time and the flow ratio, the formation of β-Si3N4 crystalline was found on the substrate surface. This enhanced the nucleation quality of the wurtzite InN epitaxy film. It was confirmed by XRD that the epi-InN materials was successfully growth on all nitrided-substrates. The properties of InN epitaxy film in the preparation of nitrided-InN/ SixNy double buffer layer on silicon (111) substrate has also been studied. InN epitaxy film which used double buffer layer can improve the crystallinity and the electrical properties effectively. With the increasing of nitrogen flow rate and nitridation time of silicon nitride buffer layer, the crystallinity and the electron mobility increased.
[1] S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: Processing, defects, and devices”, Journal of Applied Physics, vol. 86, no. 1, pp. 1-78, 1999.
[2] O. Ambacher, “Growth and applications of Group III-nitrides”, Journal of Physics D: Applied Physics, vol. 31, no. 20, pp. 2653-2710, 1998.
[3] S. C. Jain, M. Willander, J. Narayan, and R. V. Overstraeten, “III–nitrides: Growth, characterization, and properties”, Journal of Applied Physics, vol. 87, no. 3, pp. 965-1006, 2000.
[4] S. N. Mohammad and H. Morkoç, “Progress and prospects of group-III nitride semiconductors”, Progress in Quantum Electronics, vol. 20, no. 5, pp. 361-525, 1996.
[5] I. Akasaki, H. Amano, N. Koide, M. Kotaki, and K. Manabe, “Conductivity control of GaN and fabrication of UV/blue GaN light emitting devices”, Physica B: Condensed Matter, vol. 185, no. 1, pp. 428-432, 1993.
[6] S. Nakamura, M. Senoh, and T. Mukai, “P-GaN/N-InGaN/N-GaN Double-Heterostructure Blue-Light-Emitting Diodes”, Japanese Journal of Applied Physics, vol. 32, no. Part 2, No.1A/B, pp. L8-L11, 1993.
[7] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku., “Room‐temperature continuous‐wave operation of InGaN multi‐quantum‐well structure laser diodes”, Applied Physics Letters, vol. 69, no. 26, pp. 4056-4058, 1996.
[8] V. W. L. Chin, T. L. Tansley, and T. Osotchan, “Electron mobilities in gallium, indium, and aluminum nitrides”, Journal of Applied Physics, vol. 75, no. 11, pp. 7365-7372, 1994.
[9] S. K. O’Leary, B. E. Foutz, M. S. Shur, U. V. Bhapkar, and L. F. Eastman, “Electron transport in wurtzite indium nitride”, Journal of Applied Physics, vol. 83, no. 2, pp. 826-829, 1998.
[10] E. Bellotti, B. K. Doshi, K. F. Brennan, J. D. Albrecht, and P. P. Ruden, “Ensemble Monte Carlo study of electron transport in wurtzite InN”, Journal of Applied Physics, vol. 85, no. 2, pp. 916-923, 1999.
[11] B. E. Foutz, S. K. O’Leary, M. S. Shur, and L. F. Eastman, “Transient electron transport in wurtzite GaN, InN, and AlN”, Journal of Applied Physics, vol. 85, no. 11, pp. 7727-7734, 1999.
[12] T. L. Tansley and C. P. Foley, “Optical band gap of indium nitride”, Journal of Applied Physics, vol. 59, no. 9, pp. 3241-3244, 1986.
[13] A. Yamamoto, M. Tsujino, M. Ohkubo, and A. Hashimoto, “Metalorganic chemical vapor deposition growth of InN for InN/Si tandem solar cell”, Solar Energy Materials and Solar Cells, vol. 35, pp. 53-60, 1994.
[14] Z. G. Qian, W. Z. Shen, H. Ogawa, and Q. X. Guo, “Infrared reflection characteristics in InN thin films grown by magnetron sputtering for the application of plasma filters”, Journal of Applied Physics, vol. 92, no. 7, pp. 3683-3687, 2002.
[15] V. Y. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, “Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap”, physica status solidi (b), vol. 229, no. 3, pp. r1-r3, 2002.
[16] V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1—xN alloys (0.36 < x < 1)”, physica status solidi (b), vol. 230, no. 2, pp. R4-R6, 2002.
[17] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN”, Applied Physics Letters, vol. 80, no. 21, pp. 3967-3969, 2002.
[18] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN”, Applied Physics Letters, vol. 81, no. 7, pp. 1246-1248, 2002.
[19] M. Hori, K. Kano, T. Yamaguchi, Y. Saito, T. Araki, Y. Nanishi, N. Teraguchi, and A. Suzuki, “Optical Properties of InxGa1—xN with Entire Alloy Composition on InN Buffer Layer Grown by RF-MBE”, physica status solidi (b), vol. 234, no. 3, pp. 750-754, 2002.
[20] V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, V. A. Vekshin, F. Bechstedt, J. Furthmüller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, and E. E. Haller, “Band Gap of Hexagonal InN and InGaN Alloys”, physica status solidi (b), vol. 234, no. 3, pp. 787-795, 2002.
[21] Y. Saito, H. Harima, E. Kurimoto, T. Yamaguchi, N. Teraguchi, A. Suzuki, T. Araki, and Y. Nanishi, “Growth Temperature Dependence of Indium Nitride Crystalline Quality Grown by RF-MBE”, physica status solidi (b), vol. 234, no. 3, pp. 796-800, 2002.
[22] T. Miyajima, Y. Kudo, K. L. Liu, T. Uruga, T. Honma, Y. Saito, M. Hori, Y. Nanishi, T. Kobayashi, and S. Hirata, “Structure Analysis of InN Film Using Extended X-Ray Absorption Fine Structure Method”, physica status solidi (b), vol. 234, no. 3, pp. 801-804, 2002.
[23] A. Y. Cho and J. R. Arthur, “Molecular beam epitaxy”, Progress in Solid State Chemistry, vol. 10, pp. 157-191, 1975.
[24] P. Singh, P. Ruterana, M. Morales, F. Goubilleau, M. Wojdak, J.F. Carlin, M. Ilegems, and D. Chateigner, “Structural and optical characterisation of InN layers grown by MOCVD”, Superlattices and Microstructures, vol. 36, no. 4, pp. 537-545, 2004.
[25] H. Lu, W. J. Schaff, J. Hwang, H. Wu, G. Koley, and L. F. Eastman, “Effect of an AlN buffer layer on the epitaxial growth of InN by molecular-beam epitaxy”, Applied Physics Letters, vol. 79, no. 10, pp. 1489-1491, 2001.
[26] J. Ohta, H. Fujioka, T. Honke, and M. Oshima, “Epitaxial growth of InN on c-plane sapphire by pulsed laser deposition with r.f. nitrogen radical source”, Thin Solid Films, vol. 457, no. 1, pp. 109-113, 2004.
[27] S. Y. Kuo, W. C. Chen, C. N. Hsiao, and F. I. Lai, “Metal-organic molecular beam epitaxy growth of InN films on highly orientated TCO/Si(100) substrates”, Journal of Crystal Growth, vol. 310, no. 23, pp. 4963-4967, 2008.
[28] Z. Y. Li, S. M. Lan, W. Y. Uen, Y. R. Chen, M. C. Chen, Y. H. Huang, C. T. Ku, S. M. Liao, T. N. Yang, S. C. Wang, and G. C. Chi, “Growth of InN on Si (111) by atmospheric-pressure metal-organic chemical vapor deposition using InN∕AlN double-buffer layers”, Journal of Vacuum Science & Technology A, vol. 26, no. 4, pp. 587-591, 2008.
[29] W. K. Chen, Y. C. Pan, H. C. Lin, J. Ou, W. H. Chen, and M. C. Lee, “Growth and X-ray Characterization of an InN Film on Sapphire Prepared by Metalorganic Vapor Phase Epitaxy”, Japanese Journal of Applied Physics, vol. 36, no. Part 2, No. 12B, pp. L1625-L1627, 1997.
[30] J. Grandal, M. A. Sánchez-García, E. Calleja, E. Luna, and A. Trampert, “Accommodation mechanism of InN nanocolumns grown on Si(111) substrates by molecular beam epitaxy”, Applied Physics Letters, vol. 91, no. 2, p. 021902, 2007.
[31] M. Millot, N. Ubrig, J. M. Poumirol, I. Gherasoiu, W. Walukiewicz, S. George, O. Portugall, J. Léotin, M. Goiran, and J. M. Broto, “Determination of effective mass in InN by high-field oscillatory magnetoabsorption spectroscopy”, Physical Review B, vol. 83, no. 12, p. 125204, 2011.
[32] https://en.wikipedia.org/wiki/File:Wurtzite_polyhedra.png.
[33] K. Xu and A. Yoshikawa, “Effects of film polarities on InN growth by molecular-beam epitaxy”, Applied Physics Letters, vol. 83, no. 2, pp. 251-253, 2003.
[34] A. Jain, X. Weng, S. Raghavan, B. L. VanMil, T. Myers, and J. M. Redwing, “Effect of polarity on the growth of InN films by metalorganic chemical vapor deposition”, Journal of Applied Physics, vol. 104, no. 5, p. 053112, 2008.
[35] A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties”, Journal of Applied Physics, vol. 94, no. 5, pp. 2779-2808, 2003.
[36] A. Yamamoto, M. Tsujino, M. Ohkubo, and A. Hashimoto, “Nitridation effects of substrate surface on the metalorganic chemical vapor deposition growth of InN on Si and α-Al2O3 substrates”, Journal of Crystal Growth, vol. 137, no. 3, pp. 415-420, 1994.
[37] A. Yamamoto, Y. Yamauchi, M. Ohkubo, A. Hashimoto, and T. Saitoh, “Heteroepitaxial growth of InN on Si(111) using a GaAs intermediate layer”, Solid-State Electronics, vol. 41, no. 2, pp. 149-154, 1997.
[38] P. Yang, H. K. Fun, I. A. Rahman, and M. I. Saleh, “Two phase refinements of the structures of α-Si3N4 and β-Si3N4 made from rice husk by Rietveld analysis”, Ceramics International, vol. 21, no. 2, pp. 137-142, 1995.
[39] H. Ahn, C. L. Wu, S. Gwo, C. M. Wei, and Y. C. Chou, “ Structure Determination of the Si3N4/Si(111)- (8×8) Surface: A Combined Study of Kikuchi Electron Holography, Scanning Tunneling Microscopy, and ab initio Calculations”, Physical Review Letters, vol. 86, no. 13, pp. 2818-2821, 2001.
[40] Y. N. Xu and W. Y. Ching, “ Electronic structure and optical properties of α and β phases of silicon nitride, silicon oxynitride, and with comparison to silicon dioxide”, Physical Review B, vol. 51, no. 24, pp. 17379-17389, 1995.
[41] C. L. Wu, J. L. Hsieh, H. D. Hsueh, and S. Gwo, “ Thermal nitridation of the Si(111)-(7×7) surface studied by scanning tunneling microscopy and spectroscopy”, Physical Review B, vol. 65, no. 4, p. 045309, 2002.
[42] X. S. Wang, G. Zhai, J. Yanga, L. Wanga, Y. Huab, Z. Lia, J. C. Tang, X. Wang, K. K. Fung, and N. Cue, “Nitridation of Si(111)”, Surface Science, vol. 494, no. 2, pp. 83-94, 2001.
[43] G. Zhai, J. Yang, N. Cue, and X.-s. Wang, “Surface structures of silicon nitride thin films on Si(111)”, Thin Solid Films, vol. 366, no. 1, pp. 121-128, 2000.
[44] S. Gangopadhyay, T. Schmidt, and J. Falta, “Initial stage of silicon nitride nucleation on Si(111) by rf plasma-assisted growth.”, e-Journal of Surface Science and Nanotechnology, vol. 4, pp. 84-89, 2006.
[45] L. F. Lastras-Martínez, N. A. Ulloa-Castillo, R. Herrera-Jasso, R. E. Balderas-Navarro, A. Lastras-Martínez, M. Pandikunta, O. Ledyaev, V. Kuryatkov, and S. Nikishin, “Characterization of Si3N4/Si(111) thin films by reflectance difference spectroscopy”, Japanese Journal of Applied Physics, vol. 54, no. 2, p. 021501, 2015.
[46] C. L. Wu, W. S. Chen, and Y. H. Su, “N2-plasma nitridation on Si(111): Its effect on crystalline silicon nitride growth”, Surface Science, vol. 606, no. 15, pp. L51-L54, 2012.
[47] M. Kumar, M. K. Rajpalke, T. N. Bhat, B. Roul, N. Sinh, A. T. Kalghatgi, and S. B. Krupanidhia, “Growth of InN layers on Si (111) using ultra thin silicon nitride buffer layer by NPA-MBE”, Materials Letters, vol. 65, no. 9, pp. 1396-1399, 2011.
[48] A. Koukitu, N. Takahashi, and H. Seki, “Thermodynamic Study on Metalorganic Vapor-Phase Epitaxial Growth of Group III Nitrides”, Japanese Journal of Applied Physics, vol. 36, no. Part 2, No. 9A/B, pp. L1136-L1138, 1997.
[49] O. Ambacher, M. S. Brandt, R. Dimitrov, T. Metzger, M. Stutzmann, R. A. Fischer, A. Miehr, A. Bergmaier, and G. Dollinger, “Thermal stability and desorption of Group III nitrides prepared by metal organic chemical vapor deposition”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 14, no. 6, pp. 3532-3542, 1996.
[50] R. F. Davis, M. J. Paisley, Z. Sitar, D. J. Kester, K. S. Ailey, K. Linthicum, L. B. Rowland, S. Tanaka, and R.S.Kern, “Gas-source molecular beam epitaxy of III–V nitrides”, Journal of Crystal Growth, vol. 178, no. 1, pp. 87-101, 1997.
[51] C. R. Abernathy, J. D. MacKenzie, and S. M. Donovan, “Growth of group III nitrides by metalorganic molecular beam epitaxy”, Journal of Crystal Growth, vol. 178, no. 1, pp. 74-86, 1997.
[52] 陳維鈞、 田志盛、吳岳翰、郭守義、 賴芳儀、 蕭健男、張立,「化學束磊晶系統成長氮化銦磊晶薄膜之製程研究」,科儀新知,198期, P20-37,2014。
[53] 鄧建龍、姚潔宜、張茂男,「X光繞射分析在半導體工業上的應用」,奈米通訊,第十五卷,第四期,頁6-9,2008年。
[54] K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator”, Opt. Lett., vol. 40, no. 21, pp. 4823-4826, 2015.
[55] G. L. Zhao and M. E. Bachlechner, “ Electronic structure and charge transfer in α- and β-Si3N4 and at the Si(111)/ Si3N4 (001) interface”, Physical Review B, vol. 58, no. 4, pp. 1887-1895, 1998.
[56] G. Dufour, F. Rochet, H. Roulet, and F. Sirotti, “Contrasted behavior of Si(001) and Si(111) surfaces with respect to NH3 adsorption and thermal nitridation: a N1s and Si2p core level study with synchrotron radiation”, Surface Science, vol. 304, no. 1, pp. 33-47, 1994.
[57] G. M. Rignanese and A. Pasquarello, “First-principles study of NH3 exposed Si(001)2×1: Relation between N1s core-level shifts and atomic structure”, Applied Physics Letters, vol. 76, no. 5, pp. 553-555, 2000.
[58] F. Reurings, F. Tuomisto, C. S. Gallinat, G. Koblmüller, and J. S. Speck, “In vacancies in InN grown by plasma-assisted molecular beam epitaxy”, Applied Physics Letters, vol. 97, no. 25, p. 251907, 2010.