研究生: |
顏宏宇 Yen, Hung-Yu |
---|---|
論文名稱: |
以密度泛函理論計算改良鹼性析氫反應之描述符 Improvement of the Descriptor for Hydrogen Evolution Reaction in Alkaline Media by Computational Study |
指導教授: |
王禎翰
Wang, Jeng-Han |
口試委員: |
李積琛
Lee, Chi-Shen 羅夢凡 Luo, Meng-Fan 王禎翰 Wang, Jeng-Han |
口試日期: | 2022/06/10 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 95 |
中文關鍵詞: | 鹼性析氫反應 、密度泛函理論 、吉布斯自由能 、功函數 、雷達圖 |
英文關鍵詞: | Alkaline hydrogen evolution reaction, density functional theory, Gibbs free energy, work function, radar chart |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202200650 |
論文種類: | 學術論文 |
相關次數: | 點閱:84 下載:13 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在過去的研究中,酸性的析氫反應只需計算氫的吸附自由能(∆GH*),即可決定催化劑的好壞。在本篇研究中,我們利用3個鹼性析氫反應中最重要的參數:氫的吸附自由能(∆GH*)、氫氧根的吸附自由能(∆GoH*)、水解離活化能(Ea(water)),繪製出雷達圖,建構出一個簡單、有用的方法,來判斷較為複雜的鹼性析氫反應活性。一開始,本篇研究先計算單金屬銀(Ag)、金(Au)、鈷(Co)、銅(Cu)、鎳(Ni)、鈀(Pd)、鉑(Pt) (皆為FCC (111)面),並數繪製成雷達圖,與文獻值的交換電流密度對數(log i0)繪製成散佈圖後,發現兩者呈現高度正相關,代表雷達圖面積可以很好的對應鹼性析氫反應的活性。接著,本篇研究測試了以鉑(Pt)和鈀(Pd)為基底的雙金屬催化劑:Pt3M、PtM、Pd3M、PdM (M = Ag、Au、Co、Ni、Pd、Pt、Rh、Ru),並且將雷達圖面積與功函數比較後,發現兩者呈線高度正相關,代表功函數也可以代表活性,並且以鉑(Pt)為基底的雙金屬催化劑的活性高於以鈀(Pd)為基底的雙金屬催化劑,其中又以Pt3Au為最高。最後,本篇研究也計算了非金屬催化劑Fe3O4(220)及FeP(111),繪製出雷達圖後,其活性趨勢為FeP(111) > Fe3O4(220),與實驗中磷化物的活性高於氧化物的趨勢相符。
Catalytic activity of hydrogen evolution reaction (HER) in acidic media can be well predicted through hydrogen-adsorption free energy (∆GH*) previously. In the present study, we further develop a simple and useful method to diagnose the more complicated HER in alkaline media by utilizing three vital parameters of ∆GH*, hydroxide-adsorption free energy (∆GoH*), and activation energy of water dissociation (Ea(water)) in a radar chart. First, we examined single metals of Ag, Au, Co, Cu, Ni, Pd, Pt with the same crystal structure (FCC) and surface facet (111). The area of radar chart well correlated with the (logarithm of) exchange current density (log i0) from experiments, indicating the accuracy of our new method. Further, we examined Pt and Pd-based bimetallic catalysts of Pt3M, PtM, Pd3M and PdM (M = Ag, Au, Co, Ni, Pt, Pd, Rh, Ru). Excellent correlation is also found between the area and work function, representing as activity. Pt-based bimetals shows better activity than Pd-based one and Pt3Au shows the best HER activity. Finally, Fe3O4(220) and FeP(111) have been examined to extend our method in non-metallic catalysts. The predicted activity follow the trends of FeP(111) > Fe3O4(220), which consistent with the experiments that phosphides are more active than oxides.
1. James, S.R., et al., Hominid Use of Fire in the Lower and Middle Pleistocene: A Review of the Evidence [and Comments and Replies]. Current Anthropology, 1989. 30(1): p. 1-26.
2. Zhao, G., et al., Heterostructures for Electrochemical Hydrogen Evolution Reaction: A Review. Advanced Functional Materials, 2018. 28(43): p. 1803291.
3. Ďurovič, M., J. Hnát, and K. Bouzek, Electrocatalysts for the hydrogen evolution reaction in alkaline and neutral media. A comparative review. Journal of Power Sources, 2021. 493: p. 229708.
4. Coontz, R. and B. Hanson, Not So Simple. Science, 2004. 305(5686): p. 957-957.
5. Moreno-Benito, M., P. Agnolucci, and L.G. Papageorgiou, Towards a sustainable hydrogen economy: Optimisation-based framework for hydrogen infrastructure development. Computers & Chemical Engineering, 2017. 102: p. 110-127.
6. Sheng, W., et al., Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy & Environmental Science, 2013. 6(5).
7. Pierozynski, B., et al., Kinetics of oxygen evolution reaction on nickel foam and platinum-modified nickel foam materials in alkaline solution. Journal of Electroanalytical Chemistry, 2019. 847: p. 113194.
8. Hu, C., L. Zhang, and J. Gong, Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy & Environmental Science, 2019. 12(9): p. 2620-2645.
9. Nørskov, J.K., et al., Trends in the Exchange Current for Hydrogen Evolution. Journal of The Electrochemical Society, 2005. 152(3): p. J23.
10. Oh, A., et al., Rational design of Pt–Ni–Co ternary alloy nanoframe crystals as highly efficient catalysts toward the alkaline hydrogen evolution reaction. Nanoscale, 2016. 8(36): p. 16379-16386.
11. Abbas, S.A., et al., Catalytic Activity of Urchin-like Ni nanoparticles Prepared by Solvothermal Method for Hydrogen Evolution Reaction in Alkaline Solution. Electrochimica Acta, 2017. 227: p. 382-390.
12. Sun, T., et al., Ordered mesoporous NiCo alloys for highly efficient electrocatalytic hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017. 42(10): p. 6637-6645.
13. Pan, Y., et al., Cobalt phosphide-based electrocatalysts: synthesis and phase catalytic activity comparison for hydrogen evolution. Journal of Materials Chemistry A, 2016. 4(13): p. 4745-4754.
14. Hunt, S.T., et al., Activating earth-abundant electrocatalysts for efficient, low-cost hydrogen evolution/oxidation: sub-monolayer platinum coatings on titanium tungsten carbide nanoparticles. Energy & Environmental Science, 2016. 9(10): p. 3290-3301.
15. Deng, J., et al., Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy & Environmental Science, 2015. 8(5): p. 1594-1601.
16. Ma, S., et al., Pollen-like self-supported FeIr alloy for improved hydrogen evolution reaction in acid electrolyte. Journal of Energy Chemistry, 2022. 66: p. 560-565.
17. Huang, X., et al., Interface construction of P-Substituted MoS2 as efficient and robust electrocatalyst for alkaline hydrogen evolution reaction. Nano Energy, 2020. 78.
18. McCrum, I.T. and M.T.M. Koper, The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nature Energy, 2020. 5(11): p. 891-899.
19. Weng, Z., et al., Metal/Oxide Interface Nanostructures Generated by Surface Segregation for Electrocatalysis. Nano Lett, 2015. 15(11): p. 7704-10.
20. Trasatti, S., Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1972. 39(1): p. 163-184.
21. Vayenas, C.G., S. Bebelis, and S. Ladas, Dependence of catalytic rates on catalyst work function. Nature, 1990. 343(6259): p. 625-627.
22. Harinipriya, S. and M.V. Sangaranarayanan, Electron transfer reactions at metal electrodes: Influence of work function on free energy of activation and exchange current density. The Journal of Chemical Physics, 2001. 115(13): p. 6173-6178.
23. Thomas, L.H., The calculation of atomic fields. Mathematical Proceedings of the Cambridge Philosophical Society, 1927. 23(5): p. 542-548.
24. Dirac, P.A.M., Note on Exchange Phenomena in the Thomas Atom. Mathematical Proceedings of the Cambridge Philosophical Society, 1930. 26(3): p. 376-385.
25. Latter, R., Atomic Energy Levels for the Thomas-Fermi and Thomas-Fermi-Dirac Potential. Physical Review, 1955. 99(2): p. 510-519.
26. Hohenberg, P. and W. Kohn, Inhomogeneous Electron Gas. Physical Review, 1964. 136(3B): p. B864-B871.
27. Kohn, W. and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 1965. 140(4A): p. A1133-A1138.
28. Perdew, J.P. and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 1992. 45(23): p. 13244-13249.
29. Perdew, J.P., M. Ernzerhof, and K. Burke, Rationale for mixing exact exchange with density functional approximations. The Journal of Chemical Physics, 1996. 105(22): p. 9982-9985.
30. Becke, A.D., Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 1993. 98(7): p. 5648-5652.
31. Stephens, P.J., et al., Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. The Journal of Physical Chemistry, 1994. 98(45): p. 11623-11627.
32. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple. Physical Review Letters, 1996. 77(18): p. 3865-3868.
33. Slater, J.C., Atomic Shielding Constants. Physical Review, 1930. 36(1): p. 57-64.
34. Boys, S.F. and A.C. Egerton, Electronic wave functions - I. A general method of calculation for the stationary states of any molecular system. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1950. 200(1063): p. 542-554.
35. Payne, M.C., et al., Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of Modern Physics, 1992. 64(4): p. 1045-1097.
36. Hamann, D.R., M. Schlüter, and C. Chiang, Norm-Conserving Pseudopotentials. Physical Review Letters, 1979. 43(20): p. 1494-1497.
37. Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 1990. 41(11): p. 7892-7895.
38. Blöchl, P.E., Projector augmented-wave method. Physical Review B, 1994. 50(24): p. 17953-17979.
39. Setyawan, W. and S. Curtarolo, High-throughput electronic band structure calculations: Challenges and tools. Computational Materials Science, 2010. 49(2): p. 299-312.
40. NCHC. Peta級運算能量之高速計算主機. 2022; Available from: https://iservice.nchc.org.tw/nchc_service/nchc_service_hpc.php.
41. William H. Press, S.A.T., William T. Vetterling and Brian P. Flannery, Numerical recipes : the art of scientific computing. 1986, New York: Cambridge University Press.
42. Henkelman, G., B.P. Uberuaga, and H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. The Journal of Chemical Physics, 2000. 113(22): p. 9901-9904.
43. Monkhorst, H.J. and J.D. Pack, Special points for Brillouin-zone integrations. Physical Review B, 1976. 13(12): p. 5188-5192.
44. Kristoffersen, H.H., T. Vegge, and H.A. Hansen, OH formation and H2 adsorption at the liquid water–Pt(111) interface. Chemical Science, 2018. 9(34): p. 6912-6921.
45. Conway, B.E. and G. Jerkiewicz, Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the ‘volcano curve’ for cathodic H2 evolution kinetics. Electrochimica Acta, 2000. 45(25): p. 4075-4083.
46. Trasatti, S. and R. Parsons, Interphases in systems of conducting phases (Recommendations 1985). Pure and Applied Chemistry, 1986. 58(3): p. 437-454.
47. Duan, Z. and G. Wang, Comparison of Reaction Energetics for Oxygen Reduction Reactions on Pt(100), Pt(111), Pt/Ni(100), and Pt/Ni(111) Surfaces: A First-Principles Study. The Journal of Physical Chemistry C, 2013. 117(12): p. 6284-6292.
48. Kobayashi, S., D.A. Tryk, and H. Uchida, Enhancement of hydrogen evolution activity on Pt-skin/Pt3Co [(111), (100), and (110)] single crystal electrodes. Electrochemistry Communications, 2020. 110: p. 106615.
49. Wang, F., et al., A FeP powder electrocatalyst for the hydrogen evolution reaction. Electrochemistry Communications, 2018. 92: p. 33-38.
50. Qin, X., et al., The Role of Ru in Improving the Activity of Pd toward Hydrogen Evolution and Oxidation Reactions in Alkaline Solutions. ACS Catalysis, 2019. 9(10): p. 9614-9621.