簡易檢索 / 詳目顯示

研究生: 張意欣
Yi-Hsin Chang
論文名稱: 學習槓桿原理對國小學童判斷簡單機械省力費力之影響
The Effectiveness of Learning Lever Principle on the Ability of Elementary School Students' Judgment on Simple Machines.
指導教授: 李田英
Lee, Tein-Ying
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 137
中文關鍵詞: 槓桿原理簡單機械
英文關鍵詞: Lever Principle, simple machines
論文種類: 學術論文
相關次數: 點閱:354下載:38
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討兩種不同的教材對學童判斷簡單機械省力費力能力之影響。四個班級來自兩位任課教師,計131位國小六年級學童參與研究並隨機分配為實驗組及對照組。實驗組採用研究者自編之加入槓桿原理的教材內容,對照組採用審定版的課本內容進行教學,教學內容經由一位科教專家以及兩位國小自然科教師審查修正。並使用研究者設計之「國小學童對簡單機械之瞭解測驗卷」進行前測、後測及一個月後進行延宕測驗。測驗卷經過三位科教專家和兩位國小自然科教師審查改正,前測信度a=.69;後測信度a=.74;延宕測驗信度a=.74。施測結果發現學生在接受兩種不同的教材後,整體表現並無顯著差異,但在延宕測驗中發現:實驗組表現顯著優於對照組(p<.05);實驗組在三大類槓桿工具、定滑輪、動滑輪、滑輪組的省力費力判斷上的表現顯著優於對照組(p<.01)。使用兩種不同的教材都可以改進的迷思概念如下:1.坐翹翹版的時候,要兩個人一樣重,才會平衡;2.判斷簡單工具省力費力的依據為方便性、施力方向及物體重量;3.以離地面的高度作為判斷箱子重量的依據;4.定滑輪是影響滑輪組省力費力的原因;5.將手轉動和物體轉動的圈數作為判斷依據。經過一段時間後,無法改善的迷思概念為坐翹翹板的時候,越輕的要坐越裡面。使用槓桿原理的教材內容易造成的迷思概念如下:1.將物體移動的距離視為抗力臂,將手移動的距離視為施力臂;2.支點一定會在中間。使用課本內容的教材易造成迷思概念為將施力臂視為手移動的距離,將抗力臂視為物體移動的距離。建議教材中應教授槓桿原理提升學童判斷簡單機械省力費力之能力並增加日常工具應用的部分,以與生活進行連結與應用。

    Investigated was the effectiveness of two different teaching materials on students’ judgment of simple machines. There were 131 sixth graders involved. Four classes from two teachers were randomly assigned into two groups. The teaching material with lever principle was taught to the experimental group. The material from textbook was taught to the controlled group. All subjects completed pre- post-, and deferring-test through the author designed ‘Test of understanding of simple machines’. The teaching material with lever principle was developed by the researcher and had been reviewed by one science educator and two elementary school science teachers. The test had been reviewed by three science educators and two elementary school science teachers. The reliability (a) of pre- post- and deferring test were .69, .74 and .74 respectively. The results indicated that the effectiveness of the two different teaching materials was not significant on the post-test. The achievement of experimental group was significantly(p<.05) better than the controlled group on three types of lever, pulley, block and tackle on the deferring test which was given to students one month later.The misconceptions which could be improved by both teaching materials were as follows: 1.the seesaw would be balanced when the weights of two persons were the same;2.students’ judgments of simple machines were based on the convenience, the direction of force exerting, the weight of the objects, the circles of hand’s moving and object’s moving;3.students’ judgment of the weight of the box was based on it’s height to the ground;4. fixed pully caused the pully force-saving or force-wasting. The misconception hard to improve was the lighter of the person’s weight, the closer to the pivot. The misconceptions hold by the experimental group were:1.students viewed the distance of hand’s moving as the distance from hand to pivot and the distance of objects moving as the distance from object to pivot;2.pivot must be on the center. The misconception which held by the controlled group was that they viewed the distance from hand to pivot as the distance of hand’s moving and the distance from object to pivot as the distance of objects moving. The study suggested that the lever principle and applications of tools in daily life should be included in textbooks.

    目 次 第壹章 緒論…………………………………………………..1 第一節 研究動機……………………………………………..1 第二節 研究目的與研究問題………………………………..2 第三節 研究範圍與研究限制………………………………..3 第四節 名詞解釋………………………………………….….3 第五節 研究假說……………………………………………..5 第貳章 文獻探討…….…………………………..….……..6 第一節 科學教科書對學習科學概念的影響….……….…..6 第二節 槓桿概念的相關研究………………………………..12 第三節 兒童的迷思概念……………………………………..21 第章 研究方法……………………………………………..31 第一節 研究設計……………………………………………..31 第二節 研究對象………………………………………..……36 第三節 研究工具……………………………………………..38 第四節 資料收集……..………………………………………39 第五節 資料分析……………………………………………..40 第肆章 結果與討論……………….…….…………………..42 第一節 學生對簡單機械瞭解之答題分析…………………..42 第二節 兩種不同教學法的教學效果………………………..93 第三節 研究假說之檢驗與研究問題之回應.……………….100 第五章 結論與建議……………….……………..………….106 第一節 總結…………………………………………….…….106 第二節 結論……………………………………………….….107 第三節 建議…………………………………………….…….110 參考文獻………….……………………………………………….112 中文部分………………………….………………………..…...112 西文部份…………………………………….………………….…114 附錄………….…………………………….………………….….119 附錄一 融入槓桿原理之教材內容…………………….…….119 附錄二 現行教科書之教材內容……………………….…….125 附錄三 國小學童對簡單機械之瞭解測驗卷………….…….131 表 次 表1 科學教科書與學習上的問題………………….………….6 表2 習得年齡與解決槓桿問題的四個法則關係表….……...15 表3 解決槓桿平衡問題的八個認知操作之假定.……….....16 表4 四組解平衡桿的解題行為之思考結構….……………...17 表5 部編版與審定版有關簡單機械之比較……….………….32 表6 「自編教材」與「審定版」對於三大類槓桿工具省力費力之說 明…..34 表7 「自編教材」與「審定版」對於定滑輪省力費力之說明.35 表8 「自編教材」與「審定版」對於動滑輪省力費力之說明.35 表9 「自編教材」與「審定版」對於日常工具省力費力之說明36 表10 人數分配表…………………………….………………….37 表11 「國小學童對簡單機械之瞭解測驗卷」雙向細目表…….39 表12 題目一選答分佈……………………………….………….43 表13 題目二選答分佈…………………………….…………….46 表14 題目三選答分佈…………………………….…………….50 表15 題目四選答分佈……………………………...………….54 表16 題目五選答分佈…………………………….…………….58 表17 題目六選答分佈…………………………….…………….60 表18 題目七選答分佈…………………………….…………….63 表19 題目八選答分佈…………………………….…………….66 表20 題目九選答分佈…………………………….…………….69 表21 題目十選答分佈…………………………….…………….72 表22 題目十一選答分佈………………………….…………….75 表23 題目十二選答分佈………………………….…………….79 表24 學生各題答對率之分佈.………………………………….83 表25 實驗組各題在三次測驗中答對比率之比較……………..85 表26 對照組各題在三次測驗中答對比率之比較……………..87 表27 兩組前測總得分比較…………….……………………….93 表28 兩組後測總得分比較…………..………………….…….93 表29 兩組延宕測驗總得分比較………..………………….….93 表30 兩組後測題組一得分比較..……..……………………..94 表31 兩組後測題組二得分比較…………………….………….94 表32 兩組後測題組三得分比較………………….…………….94 表33 兩組後測題組四得分比較……………………….……….95 表34 兩組後測題組五得分比較…………………….………….95 表35 兩組延宕測驗題組一得分比較………………..…………95 表36 兩組延宕測驗題組二得分比較………………….……….96 表37 兩組延宕測驗題組三得分比較….…………….…………96 表38 兩組延宕測驗題組四得分比較…………………………..96 表39 兩組延宕測驗題組五得分比較…….………….…………97 表40 實驗組進步分數比較………………………….……….…97 表41 實驗組進步分數變異數比較………….………………….97 表42 對照組進步分數比較……………….………….…………98 表43 對照組進步分數變異數比較……….…………………….98 表44 實驗組學生在後測、延宕測驗中之題組相關性.……….99 表45 對照組學生在後測、延宕測驗中之題組相關性………..99 圖 次 圖1 「學生的科學」來源圖….……………………………..6 圖2 解槓桿問題四個法則的流程圖…...………………….14

    參考文獻
    一、中文部分
    王美芬(民80)。自然科錯誤概念之研究。台北市立師範學院學報,22,367-400。
    王琬菁(民91)。「原子價」概念融入科學課文對學生學習化學式與其相關概念。國立台灣師範大學科學教育研究所碩士論文。
    王道還、程樹德、傅大為、錢永祥譯(民74):科學革命的結構。孔恩(Thoma s Kuhn) 著。台北:允晨。
    江文慈(民82)。槓桿認知能力發展的評量與學習遷移歷程的分析動態評量之應用。國立台灣師範大學教育心理與輔導研究所碩士論文。
    李田英(民84)。國小三至五年級自然科學課程學習困難之教材分析。師大學報,40,475-508。
    李春生(民90)。編寫中學地球科學教科書的一些經驗談。國立編譯館通訊,5,20-24。
    邱美虹(民82)。科學教科書與概念改變。科學教育月刊,163,2-8。
    林清山(譯)(民85)。R. E. Mayer著。教育心理學-認知取向。台北:遠流。
    林生傳(民86)。我國學生概念發展的水準與特徵研究。國立高雄師範大學教育系教育學刊,15,223-250。
    周珮儀(民91)。國小教師解讀教科書的方式。國立台北師範學院學報,15,115-138。
    洪瑞英(民87)。高中生的「化學平衡」概念之研究。國立高雄師範大學科學教育研究所碩士論文。
    洪若烈(民92)。國小教師之教科書使用方式及其影響因素之探討。國教學報,15,175-191。
    柯華葳、周祝瑛(民84)。國中日常教材內容之生態研究。行政院教育改革省議委員會委託專題報告。
    俞筱鈞(民71)。當代學術巨擘大系-人類智慧探索者 : 皮亞協。台北:允晨。
    教育部(民82)。國民小學課程標準。台北:作者。
    許良榮(民83)。科學課文的特性與學習。科學教育月刊,170,23-36。
    許良榮(民86)。科學課文結構對科學學習的影響。國立台灣師範大學科學教育研究所博士論文。
    許健將(民89)。利用二段式測驗探查高三學生有關共價鍵及分子結構之迷思概念。國立彰化師範大學科學教育研究所碩士論文。
    陳政宏(民87)。國小教科書選用現況與改進之研究。台北市立師範學院國民教育研究所碩士論文。
    陳義勳(民80)。國小高年級學生自然科學中力學單元迷思概念之探討。臺北市立師範學院學報,27,83-104。
    郭重吉(民89)。從數理課程改革的趨勢談師資培資的因應之道。科學教育,231,83-88。
    張春興(民87)。教育心理學。臺北:東華書局。
    張志銘(民93)。國小六年級學童槓桿迷思概念之二階層診斷研究。台北市立師範學院科學教育研究所碩士論文。
    游家政(民87)。教科書選用的問題與改進。北縣教育,21,75-83。
    游光純(民89)。利用臨床晤談探究國民小學高年級學童對槓桿概念的另有想法。國立台北師範學院數理教育研究所碩士論文。
    彭泰源(民88)。國小五年級學童「力與運動」概念學習之研究。科學教育,10,231-261。
    裘維鈺 (民84)。國小兒童植物概念及其相關迷思概念之研究。國立台中師範學院初等教育研究所碩士論文。
    楊純珠(民88)。「溶液」多媒體CAL之概念學習研究。國立臺灣師範大學化學研究所碩士論文。
    董正玲(民79)。利用晤談方式探究國小兒童運動與力概念的另有架構。國立彰化師範大學科學教育研究所碩士論文。
    熊召弟、王美芬、段曉林、熊同鑫(譯)(1996)。S.M. Glynn & R.H.Yeany著。科學學習心理學。台北:心理。
    熊召弟(民84)。以概念角度談學生的生物觀。國民教育,35(7/8),8-13。
    劉昭宏、郭重吉(民86)。教科書在國中理化教學中的應用之個案研究。科學教育(彰師大),6,89-112。
    劉俊庚(民90)。迷思概念與概念改變教學策略之文獻分析-以概念構圖和後設分析模式探討其意涵與影響。國立台灣師範大學科學教育研究所碩士論文。
    鄭麗玉(民81)。多元智慧論在教學上的應用與省思。教師之友,43(2),19-30。
    樊雪春(民89)。學生科學迷思概念的法則分析與建構取向教學法之實驗效果研究。國立台灣師範大學教育心理與輔導研究所博士論文。
    歐陽鍾仁(民76)。科學教育概論。台北:五南。
    賴明照(民93)。國小高年級學童槓桿迷思概念之研究。國立台中師範學院自然科學教育學系碩士論文。
    鍾聖校(民79)。認知心理學。臺北:心理。
    謝秀月(民82)教材影響學生科學概念學習之初探-以國小自然科學電動機單元為例。國立台南師範學院,26,239-254。
    謝秀月(民84)。師院非數理系學生熱與溫度概念架構之探討。台南師院學報,28,479-507。
    蘇幼良(民91)。以建構主義教學策略探究國小二年級學童對「聲音」的概念學習。國立臺北師範學院數理教育研究所碩士論文。
    蘇育任(民82)。「兒童的科學」研究之沿革與其對國小自然科教學之啟示。國立台中師範學院初等教育研究所初等教育研究集刊,1,91-104。
    二、英文部分
    Alvermann, D. E. (1987). The role of textbook in their teacher’s interactive decision making. Reading Research and Instruction, 26(2), 115-227.
    Andersson, B. (1986). The experiential gestalt of causation: a common core to pupils’preconceptions in science. European Journal of Science Education, 8(2), 112-134.
    Armstrong. J., & Bray. J. (1989). How can we improve textbook?Journal of Research in Science Teaching, 10(2), 134-146.
    Ball, D. L., Feiman, N., & Neimer, P. (1988). Using textbooks and teachers' guides: A dilemma for beginning teachers and teacher educators. Curriculum Inquiry, 18 (4) ,401-423.
    Bar, V., & Travis, A. S. (1991). Children’s views concerning phase changes. Journal of Research in Science Teaching, 11(1), 155-171.
    Barman,C . R. (1992). An evaluation of the use of a technique designed to assist prospective elementary teachers ues the learning cycle with science textbook. School Science and Mathemaics, 92(2), 59-63.
    Banerjee, A. (1991). Misconceptions of students and teachers in chemical equilibrium. International Journal of Science Education, 13(3), 355-362.
    Bendall, S., Goldberg, F., & Galili, I. (1993). Prospective elementary teachers’ prior knowledge about light. Journal of Research in Science Teaching, 30(9), 1169-1187.
    Blosser, P. E. (1987). Science misconceptions research and some implications. Research in Science Education, 28(4), 363-382.
    Bonder, G. (1991). I have found you an argument: The conceptual knowledge of beginning chemistry graduate students. Journal of Chemical Education, 68, 385-388.
    Chiappetta, E. L., Sethna, G. H., & Fillman, D. A. (1993). Do middle school life science textbooks provide a balance of scientific literacy themes? Journal of Research in Science Teaching, 30, 787-797.
    Christopher, D.,& Wayne, W. (1995). Middle School Science Teachers' Perception of Textbook Congruency with Classroom Needs. ERIC NO ED389696.
    DiGisi, L. L., & Willett, J. B. (1995). What high school biology teacher say about their textbook use:A descriptive study.Journal of Research In Science Teaching, 32 (2),123-142.
    Driver, R., Guesne, E., & Tiberghien, A. (1985). Childrens’ Ideas in Science.Milton Keynes:Open University Press.
    Driver, R., & Easley, J. (1978). Pupils and paradigms: a review of literature orelated to concept development in adolescent science students. Studies in Science Education, 5, 61-84.
    Duit, R., Treagust, D. F., & Mansfield, H. (1996). Investigating student understanding as a prerequisite to improving teaching and learning in science and mathematics. In Treagust, D. F., Duit, R., & Fraser, B. J.(Eds.), Improving teaching and learning in science and mathematics,17-31. New York : Teachers College Press.
    Eaton, J. F., Anderson, C.W., & Smith, E. L. (1984). Students’ misconceptions interfere with science learning:Case studies of fifth-grade students. Elementary School Jounal, 84(4), 365-379.
    Fisher, K. M. (1985). A misconception in biology: amino acids and translation. Journal of Research in Science Education, 22(1), 53-62.
    Galili, I., & Lavrik, V. (1998). Flux concept in learning about light: A critique of the present situation. Science Education, 82, 591-613.
    Garnett, P. J., & Hackling. (1995). Students’ alternative conceptions in chemistry:A review of research and implications for teaching and learning. Studies in Science Education, 25, 69-95.
    Gilbert, J. K., Watts, M., & Osborne, R. J. (1982).Students’ conceptions of ideas in machine. Physical Education, 17,62-66.
    Gilbert, J. K., & Watts, D. M. (1983). Concepts, misconceptions and alternative conceptions: changing perspec-tives in science education. Studies in Science Education, 10, 61-98.
    Griffard, P. B., & Wandersee, J. H. (2001). The two-tier instrument on photosynthesis: what does it diagnose? International Journal of Science Education, 23, 10, 1039-1052.
    Grossman, P. L., & Wilson, S. L. (1989). Teachers of substance: subject matter knowledge for teaching knowledge base for the beginning teacher, 23-26. Oxford: Pergamon.
    Gunstone, R. (1987). Student understanding in mechanics: a large population survey. American Journal of Physics, 55(8), 691-696.
    Halford, G. S., & Dalton, C. (1995). Performance on the balance scale by two year old children. ERIC NO ED385355.
    Hardiman, P. T. (1984). Learning to understand the balance beam. ERIC NO ED259296.
    Helm, H. & Hall, C. (1985). ’Misconceptions’ research: A problem-oriented perspective. Paper presented at the annual meeting of the AERE in Chicago.
    Holliday, W.G.. (1991). Helping students learneffectively. In C.M.Santa. & D.E. Alvermann (Eds), Science Learning:Processes and applications, 38-47, International Reading Association.
    Jones, B. L., & Lynch, P. P. (1989). Children’s understanding of the notions of solid and liquid in relation to some common substances. International Journal of Science Education,11(4), 417-427.
    Klausmeier, H. J. (1974). Conceptual Learning and Development. New York: Academic Press.
    Lewis, E., & Linn, M. (1994). Heat energy and temperature conceptions of adolescents, adults, and experts: Implications for curricular improvements. Journal of Research in Science Teaching, 31(6), 657-677.
    Linder, C. J. (1993). University physics students’ conceptualizations of factors affecting the speed of sound propagation. International Journal of Science Education, 15(6),655-662.
    Mak, S.Y. & Young, K. (1987). Misconceptions in the teaching of heat. School Science Review, 68, 224, 464-470.
    Masten,W.G., Stacks,J.R., Priest,B.R., Vitale,M.R., & Scott,B.J. (1999). Effects of training in textbook comprehension improvement strategies with teachers in inclusive classrooms. Reading Improvement, 36, 4, 167-71.
    McClelland, J. A. G. (1984). Alternative frameworks: Interpretation of evidence. European Journal of Science Education, 6(1), 1-6.
    McDermott, L. C. (1984). Research on conceptual understanding in mechanics. Physics Today, 37, 24-32.
    Millar, R., & Kragh, W. (1994). Alternative frameworks or context-specific reasoning? Children’s ideas about the motion of projectiles. School Science Review, 75(272), 27-34.
    Minstrell, J. (1982). Explaining the “at rest” condition of an object. Physics Teacher, 20,10-14.
    Osborne, R., & Cosgrove, M. M. (1983). Children’s conceptions of the changes of state of water. Journal of Research in Science Teaching, 20(9), 825-838.
    Osborne, R. (1984). Children’s dynamics. Physics Teacher,22(8), 504-508.
    Osborne, R., Bell, B., & Gilbert, J. (1983). Science teaching and children’s ideas of the world. European Journal of Science Education, 5(1), 1-14.
    Palmer, D. (2001). Students’ alternative conceptions and scientifically acceptable conceptions about gravity. International Journal of Science Education, 23(7), 691-706.
    Pella, M. D.(1966). Concept learning in science. The Science Teacher, 33(1), 31-34.
    Posner,G.. J., Strike, K. A., Hewson, P. W. & Gertzog,W. A. (1982). Accommodation of a science conception: toward a theory of conceptual change. Science Education, 66(2), 211-228.
    Quilez, P. J., & Solaz, J. J. (1995). Students’ and teachers’ misapplication of Le Chatelier’s principle: Implications for the teaching of chemical equilibrium. Journal of Research in Science Teaching, 32(9), 939-957.
    Renner, J. S. (1990). Understanding and misunderstandings of eighth granders of four physics concepts found in textbook. Journal of Research in Science Teaching, 27, 1,35-54.
    Roth, K.J. (1991). Reading science texts for conceptual change. In C.M.Santa. & D.E. Alvermann (Eds),Science Learning:Processes and applications,48-63, International Reading Association.
    Schmidt, H. J. (1991). A label as a hidden persuader:Chemists’ neutralization concept. International Journal of Science Education, 13(4), 459-472.
    Siegler, R. S. (1983). How knowledge influence learning. American Science, 71, 631-638.
    Solomon, J. (1983). Learning about energy: how pupils think in two domain. European Journal of Science Education, 5(1), 49-59.
    Stavridou, H., & Solomonidou, C. (1998). Conceptual reorganization and the construction of the chemical reaction concept. International Journal of Science Education, 20(2), 205-221.
    Stinner, A. (1992). Science textbooks and science teaching:From logic to evidence. Science education, 76(1), 1-16.
    Summers, M. K. (1983). Teaching Heat-an analysis of misconceptions. School Science Review, 64, 229, 670-675.
    Taber, K.S. (2000). Multiple Frameworks? Evidence of manifold conceptions in individual cognitive structure. International Journal of Science Education, 22( 4), 399-417.
    Trembath , R. J. (1980). Decting and classify the origins of science misconceptions. International Journal of Science Education, 25(6), 234-254.
    Tytler, R. (2000). A comparison of year 1 and year 6 students’ conceptions of evaporation and condensation: dimensions of conceptual progression. International Journal of Science Education, 22(5), 447-467.
    Wandersee, J. H., Mintzes, J. J.,& Novak, J. D. (1994). Handbook of Research on Science Teaching and Learning (177-204). Macmillan Publishing Company.
    Wang, H.C. (1998). Science textbook studies reanalysis : teachers ”friendly” content analysis methods? Paper presented at the meeting of the Annual Meeting of NARST, San Diego, CA.
    Watson, J. R., Prieto, T., & Dillon, J. S. (1997). Consistency of students’ explanations about combustion. Science Education, 81, 425-444.
    Watts, D. M., & Zylbersztajn, A. (1981). A survey of some children’s ideas about force. Physics Education, 16, 360-365.
    Weidler, S.D. (1984). Reading in content area of science. In M.M. Dupui(Ed.), Reading in the content areas: Research for Teachers(pp.54-65).Newark, DE: International Reading Association..
    White, B. (1984). Designing computer games to help physics students understand Newton’s law of motion. Cognition and Instruction, 1(1), 69-108.
    Yore, L. D., & Shymansky, J. A. (1991). Reading in science: developing and operational conception to guide instruction. Journal of Science Teacher Education, 2(2), 29-36.

    QR CODE