簡易檢索 / 詳目顯示

研究生: 呂學敏
LU, XUE-MIN
論文名稱: 臺北盆地淺層三維速度構造模型與驗證
Modelling and Validation of 3-D Shallow Velocity Structure in the Taipei Basin
指導教授: 王聖鐸
Wang, Sen-Do
林哲民
Lin, Che-Min
學位類別: 碩士
Master
系所名稱: 地理學系
Department of Geography
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 148
中文關鍵詞: 臺北盆地剪力波速普通克利金法
英文關鍵詞: Taipei Basin, S-wave Velocity, Ordinary Kriging
DOI URL: http://doi.org/10.6345/NTNU201901039
論文種類: 學術論文
相關次數: 點閱:171下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的在測試並提出結合既有的地球物理探勘資料的方法,並建立可用於地動模擬的臺北盆地三維速度構造模型。本研究結合了鑽探井測、微地動陣列、微地動單站頻譜比法以及接收函數法等資料,利用反距離權重法與普通克利金法分別進行測試。
    在普通克利金法之中,測試了僅考量水平半變異函數的方法以及同時考量垂直與水平半變異函數兩種主要設定,並分別對該兩種設定的普通克利金法分別加入了所提出之信心權重因子方法進行測試結果。本研究測試了兩種信心權重因子,其中,第一種權重因子以方法類別為基礎,利用各方法之強震站模擬之平均值作為權重因子,第二種信心權重因子則以在相異場址之下,不同的方法模擬的個別結果作為依據。
    本研究依照資料的空間分布將內插模型分為三個部分進行內插,以交叉驗證法驗證參數的結果,並以強震站單站頻譜法的模擬結果驗證模型用於模擬的適配性。其結果顯示反距離權重法得到的速度不符合實際地質情況,普通克利金法僅考量水平半變異函數使得內插數值變化較為緩慢,其交叉驗證的誤差略小於加入垂直向半變異函數的方法,加入信心權重因子對於結果變化並不明顯。相反地,考量垂直半變異數的方法對數值的影響變化較大,加入權重信心因子亦造成較大的數值變化。對兩項空間內插模型進行強地動單站頻譜法模擬,其結果顯示後者得到較好的適配性。

    The purposes of this study is to test and propose a method combining different existing geophysical survey data and build a three-dimensional S-wave velocity model for ground motion simulation. The inverse distance weighting (IDW) and the ordinary kriging methods were applied to interpolate the data obtained from the suspension P-S logging, the microtremor array, the horizontal-to-vertical spectral ratio (H/V) and the receiver function approaches.
    In regard to the ordinary kriging method, the test based on two types of setting, the first setting was to consider only the horizontal semivariogram to interpolate model. Conversely, the second was to consider both the horizontal and vertical semivariogram. Moreover, on the basis of the two major setting, the proposed confidence weight factor method was applied. Two set of the confidence weight factors calculated by the seismic H/V simulation result was tested, the first set based on the types of geophysical approaches. The second set based on considering the different approaches at each site.
    According to the spatial distribution of data, three depth scales were divided in this study. The parameters were tested by cross-validation and the fitness of models were verified by the seismic H/V simulation. The result showed that the simulation of IDW method do not fit the real geological condition well. The value of the ordinary kriging considering both the horizontal and vertical semivariogram varied stronger than the other. And the effect of confidence weight factors was stronger as well. Despite the cross-validation result was worse than the method only considering horizontal semivariogram. The fitness of simulation was higher than the latter.

    Abstract i Chinese Abstract ii Acknowledgement iii Index iv List of Tables vii List of Figures viii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Review 3 1.2.1 Geophysical Survey Data 3 1.2.2 Geostatistical Interpolation Method 8 Chapter 2 Study Area and Data 12 2.1 Area of Interest 12 2.2 S-wave Velocity Data 14 Chapter 3 Methodology 18 3.1 Inverse Distance Weighting 18 3.2 Ordinary Kriging 21 3.2.1 Regionalized Variable Theory 22 3.2.2 Stationary 22 3.2.3 Semivariogram 24 3.2.4 Effects in the semivariogram 33 3.2.5 Ordinary Kriging 43 3.3 Confidence Weight factor 48 3.4 Validation 50 3.4.1 Cross-Validation 50 3.4.2 Seismic H/V Simulation 51 Chapter 4 Result and Discussion 53 4.1 Study Process 53 4.1 Result of the IDW Method. 56 4.2 Confidence Weight Factor Calculation 56 4.3 Semivariogram Analysis 57 4.4 Cross-Validation 61 4.5 Simulation 65 4.6 Discussion 67 Chapter 5 Conclusion and Suggestion 72 5.1 Conclusion 72 5.2 Suggestion 73 References 74 Appendix A 81 Appendix B 92 Appendix C 95 Appendix D 98 Appendix E 101 Appendix F 128

    Cressie, N. (1990). The origins of kriging. Mathematical Geology, 22(3), 239–252. doi:10.1007/bf00889887
    Garnero, Gabriele & Godone, Danilo. (2013). Comparisons between different interpolation techniques. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives. 40. 139-144. 10.5194/isprsarchives-XL-5-W3-139-2013.
    Ghazi, Azam & Moghaddas, Naser & Sadeghi, Hossein & Ghafoori, Mohammad & Lashkaripour, Gholam Reza. (2014). Spatial Variability of Shear Wave Velocity Using Geostatistical Analysis in Mashhad City, NE Iran. Open Journal of Geology. 04. 354-363. 10.4236/ojg.2014.48027.
    Goovaerts, Pierre. (1997). Geostatistics for Natural Resource Evaluation. New York.
    Gringarten, E., & Deutsch, C. V. (1999). Methodology for Variogram Interpretation and Modeling for Improved Reservoir Characterization. Society of Petroleum Engineers. doi:10.2118/56654-MS
    Haskell N. A (1960). Crustal reflection of plane SH waves. Journal of Geophysical Research, 65-12, 4147-4150, doi:10.1029/JZ065i012p04147.
    Isaaks, E.H., Srivastava, R.M. (1989). An Introduction to Applied Geostatistics. Oxford University Press, New York.
    Kuo, C. H., K. L. Wen, H. H. Hsieh, C. M. Lin, T. M. Chang, and K. W. Kuo (2012). Site classification and Vs30 estimation of free-field TSMIP stations using the logging data of EGDT, Engineering Geology, 129-130, 68-75, doi:10.1016/j.enggeo.2012.01.013.
    Kuo, C. H., C. T. Chen, C. M. Lin, K. L. Wen, J. Y. Huang, and S. C. Chang (2016). S-Wave Velocity Structure and Site Effect Parameters Derived by Microtremor arrays in the Western Plain of Taiwan, J. Asian Earth Sci., 128, 27-41, doi: 10.1016/j.jseaes.2016.07.012.
    Lin, C. M., K. L. Wen, C. H. Kuo, and C. Y. Lin (2014). S-Wave Velcity Model of Taipei Basin, The 5th Asia Conference on Earthquake Engineering (5ACEE), Taipei, Taiwan, Oct. 16-18.
    Lin, C. M., K. L. Wen, T. M. Chang, and C. H. Kuo (2011). Shallow Structure of Taipei Basin Using High-frequency Receiver Function Technique, 4th ISAPEI/IAEE International Symposium: Effect of Surface Geology on Seismic Motion, Santa Barbara, USA, August 23-26.
    Madhloom, Huda & Id, Nadhir & Al-Ansari, Nadhir & Id, Jan & Laue, Jan & Chabuk, Ali. (2017). Modeling Spatial Distribution of Some Contamination within the Lower Reaches of Diyala River Using IDW Interpolation. Sustainability. 10. 10.3390/su10010022.
    Matheron, G. (1963). Principles of Geostatistics. Economic Geology 58, 1246–1266.
    Micheli, Leonardo & Deceglie, Michael & Muller, Matthew. (2018). Mapping Photovoltaic Soiling Using Spatial Interpolation Techniques. IEEE Journal of Photovoltaics. PP. 1-6. 10.1109/JPHOTOV.2018.2872548.
    Ozelkan, Emre & Bagis, S & Üstündağ, Burak & Cem Ozelkan, Ertunga & Yucel, Meric & Ormeci, Cankut. (2013). Land surface temperature - Based spatial interpolation using a modified Inverse Distance Weighting method. 2013 Second International Conference on Agro-Geoinformatics.110-115. 10.1109/Argo-Geoinformatics.2013.6621890.
    Riaño, A. C., Reyes, J. C., Yamin, L. E., Montejo, J. S., Bustamante, J. L., Bielak, J., Pulido, N., Molano, C. E., & Huguett, A.. (2017). Development of a first 3D crustal velocity model for the region of Bogotá, Colombia. Ingeniería e Investigación, 37(2), 42-51. https://dx.doi.org/10.15446/ing.investig.v37n2.64097
    Shepard, Donald. (1968). A Two-Dimensional Interpolation Function for Irregularly-Spaced Data. ACM National Conference. 23. 517-524. 10.1145/800186.810616.
    Srinivas, D & Srinagesh, D & Chadha, R.K. & Kumar, M. (2013). Sedimentary Thickness Variations in the Indo-Gangetic Foredeep from Inversion of Receiver Functions. Bulletin of the Seismological Society of America. 103. 2257-2265. 10.1785/0120120046.
    Tobler, W. (1970). A Computer Movie Simulating Urban Growth in the Detroit Region. Economic Geography, 46, 234-240. doi:10.2307/143141
    Wang, Chien-Ying & Lee, Yi-Hen & Ger, Mang-Long & Chen, Yi-Ling. (2004). Investigating Subsurface Structures and P- and S-wave Velocities in the Taipei Basin. Terrestrial, Atmospheric and Oceanic Sciences. 15. 609-627. 10.3319/TAO.2004.15.4.609(T).
    Wen, K. L., C. M. Lin, C. H. Kuo, C. T. Chen, and J. Y. Huang (2016). Construction of the Shallow Shear-Wave Velocity Model in Taiwan, the 5th International Symposium on the Effects of Surface Geology on Seismic Motion (ESG5), Taipei, Taiwan, Aug. 15-17.
    Wu, CF. & Huang, HC (2016). Detection of Seismic Bedrock Using Radial Receiver Function, Pure Appl. Geophys, 173: 1917. https://doi.org/10.1007/s00024-015-1236-1.
    田璦菁(2003)。颱洪期間區域總雨量估計最佳化之研究,國立中央大學土木工程研究所碩士論文,中壢。
    石再添、張瑞津、陳美鈴、林清泉、曾正雄 (1989)。台北盆地動態環境的綜合研究。國立台灣師範大學地理研究所地理研究報告,第 15 期,p1-71。
    林哲民(2003)。利用接收函數法推估蘭陽平原淺層速度構造,國立中央大學地球物理研究所碩士論文,中壢。
    林哲民(2009)。台灣西部平原之淺部速度構造、場址特性及三維震波模擬,國立中央大學地球物理研究所博士論文,中壢。
    林晨毅(2014)。利用微地動場址特性擬合技術推估台北盆地S波速度構造,國立中央大學地球物理研究所碩士論文,中壢。
    郭俊翔(2004)。探討不同地質區強震站之淺層S波速度構造,國立中央大學地球物理研究所碩士論文,中壢。
    郭俊翔、溫國樑、謝宏灝、林哲民、張道明(2011)。近地表剪力波速性質之研究。100年度國家地震工程研究中心研究成果報告(報告編號:NCREE-11-022)。
    陳文山(2016)。臺灣地質概論。中華民國地質學會,臺北。
    陳俊德(2013)。台北盆地與嘉南平原之震波模擬與地動特性,國立中央大學地球物理研究所博士論文,中壢。
    陳柏宏(2007)。權重克利金模式之發展,國立交通大學土木工程學系碩士論文,新竹。
    黃有志(2003)。蘭陽平原場址效應及淺層S波速度構造,國立中央大學地球物理研究所碩士論文,中壢。
    黃雋彥(2009)。利用微地動量測探討台灣地區之場址效應,國立中央大學地球物理研究所碩士論文,中壢。
    鄧屬予(2006)。臺北盆地之地質研究。西太平洋地質科學, 第 6卷。p1-12。

    下載圖示
    QR CODE