簡易檢索 / 詳目顯示

研究生: 胡登貴
論文名稱: 結合CORDIC演算法之MIPS CPU設計與實作
Embedded a CORDIC Processing in MIPS CPU Design
指導教授: 張吉正
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 62
中文關鍵詞: MIPSHDLCPUFPGACORDIC
論文種類: 學術論文
相關次數: 點閱:339下載:38
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為MIPS CPU結合CORDIC(COodinate Rotation DIgital Computer)演算法之研究,利用HDL(Hardware Description Language)硬體描述語言,實現具有三角函數運算指令之三十二位元MIPS CPU。設計結果經由ModelSim完成電路模擬,並下載至Xilinx Virtex XCV800 FPGA (Field Programmable Gate Array)功能驗證成功。由於CORDIC演算法有著運算快速和架構簡單的特性,近年來廣泛的被使用在DSP的相關應用上。對許多應用來說,微控制器搭配DSP處理晶片已經是相當經典的組合;而本論文在此提出使用CORDIC演算法結合MIPS的想法,期望在某些應用面比經典的方法更加合適(如僅需簡單的DSP處理指令),以達到節省成本的目的。本研究總共實作了三十七道固定點指令、四道浮點指令及兩道以CORDIC演算法為基礎的Cos和Sin運算指令。

    This thesis is a study of embedding the CORDIC(COodinate Rotation DIgital Computer) algorithm into MIPS CPU design. Finally, a 32-bit MIPS CPU with trigonometric arithmetic instructions as well as a floating-point co-processor was implemented. The final design had been tested and simulated by ModelSim and verified by downloading into Xilinx Virtex XCV800 FPGA(Field Programmable Gate Array) successfully.
    The CORDIC algorithm had been utilized in many DSP applications recently because of its fast computation and simple hardware structure. The cooperation of a microcontroller and a DSP processor could be used in many DSP applications, but this thesis provides an alternation of embedding the CORDIC algorithm into MIPS CPU. We hope this combination will be more suitable in some simple applications, (like one may need only a few DSP instructions,) and achieves cost-down by this way. In this thesis, there are 37 fixed-point, 4 floating-point and 2 trigonometric(Cos and Sin) instructions, 43 instructions have been implemented totally.

    第一章 前言 1 第二章 相關知識與文獻探討 3 第一節 MIPS CPU相關知識 3 壹、CPU基本概念 3 貳、指令執行時脈週期 4 參、Multiple Cycles 5 第二節 CORDIC原理與架構 8 壹、CORDIC演算法 8 貳、CORDIC之硬體架構 11 第三節 文獻探討 12 壹、加減器 12 貳、移位器 13 參、ROM 14 肆、其他CORDIC架構 15 伍、管線化 16 第三章 CPU設計 18 壹、模組規劃並定義功能需求 18 貳、資料路徑 31 參、控制單元 40 肆、實作指令集 44 第四章 模擬與驗證 47 壹、實驗平台規劃 47 貳、測試流程 49 參、測試與比較 50 第五章 結論 59 參考文獻 60

    [1] Volder, J., “The CORDIC Trigonometric Computing Technique,” IRE Trans. Electronic Computing, Vol EC-8:330-334 Sept 1959.
    [2] J. S. Walther, “A Unified Algorithm For Elementary Functions”, Spring Joint Computer Conference, pp.379-385, 1971.
    [3] K. Maharatna, A. S. Dhar, and Banerjee,” A VLSI array architecture for realization of DFT, DHT, DCT and DST,” Signal Process., Vol. 81, pp. 1813-1822, 2001.
    [4] M. C. Mandal, A. S. Dhar, and S. Banerjee, “Multiplierless array architecture for computing discrete cosine transform,” Computers Elect. Eng., Vol. 21, No. 4, pp. 327-333, 1994.
    [5] 莊秉卓,”IEEE 802.11n 基頻接收器設計與實現”,國立交通大學電信工程學系碩士論文,民國九十四年。
    [6] 李逸仙,”補償無乘法數位濾波器有限精準度之演算法設計技巧”,國立中央大學電機工程研究所碩士論文,民國九十年。
    [7] David A. Patterson & John L. Hennessy,曾志光、鄭光近譯,“計算機組織與設計軟硬體介面 第二版”,碁峰資訊,2000。
    [8] S.-F. Hsiao, and C.-Y. Lau, “Design of a unified arithmetic processor based on redundant constant-factor CORDIC with merged scaling operation,” IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 4, pp.297-303, July 2000.
    [9] Naofumi Takagi, Toru Asada, and Shuzo Yajima, “Redundant CORDIC Methods with a Constant Scale Factor for Sine and Cosine Computation,” IEEE Transactions on Computers, Vol. 40, No. 9, pp.989-995, Sep. 1991.

    [10] Javier Valls, Martin Kuhlmann, and Keshab K. Parhi, ”Evaluation of CORDIC Algorithm for FPGA Design,” Journal of VLSI Signal Processing 32, pp. 207-222, 2002.
    [11] S.-J. Yih, M. Cheng and W.-S. Feng, “Multilevel barrel shifter for CORDIC Design,” Electronic Letters 20th Vol. 32, No. 13, pp. 1178-1179, June 1996.
    [12] M. Morris Mano & Charles R. Kime,江昭皚、范丙林譯, “邏輯與計算機設計 第二版”,p. 545,東華書局,2000.
    [13] Shaoyun Wang, Vincenzo Piuri, and Earl E. Swartzlander, “Hybrid CORDIC Algorithm,” IEEE Trans. On Computers, Vol. 46, No. 11, pp. 1202-1206, Nov. 1997.
    [14] K. Maharatna, A. Troya, S. Banerjee and E. Grass, “Virtually scaling-free adaptive CORDIC rotator,” IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 6, pp. 448-456, November 2004.
    [15] Xiaobo Hu, Ronaold G. Harber, and Steven C. Bass, “Expanding the Range of Convergence of CORDIC Algorithm,” IEEE Trans. On Computers, Vol. 40, No. 1, pp. 13-21, Jan 1991.
    [16] 林瑛萍,“CPU設計與教學之FPGA硬體平台製作-以MIPS為例” ,台灣師範大學工業教育所碩士論文,2003。
    [17] William Stallings, “Computer Organization & Architecture : Designing For Performance Sixth Edition,” Pearson Education, Inc.,2003.
    [18] Kishore Kota, Joseph R. Cavallaro, “Numerical Accuracy and Hardware Tradeoffs for CORDIC Arithmetic for Special-Purpose Processors,” IEEE Transactions on Computers, Vol. 42, No. 7, pp. 769-779, July 1993.
    [19] David A. Patterson & John L. Hennessy,陳中和譯,“計算機組織與設計軟硬體介面 第三版”,東華書局,2005。
    [20] Cheng-Shing Wu, and An-Yeu Wu, “Modified Vector Rotational CORDIC(MVR-CORDIC) Algorithm and Architecture,” IEEE Trans. On Circuits and Systems-II Analog and Digital Signal Processing, Vol. 48, No. 6, pp.548-561, June 2001.
    [21] Chih-Hsiu Lin, and An-Yeu Wu, “Mixed-Scaling-Rotation CORDIC (MSR-CORDIC) Algorithm and Architecture for High-Performance Vector Rotational DSP Applications,” IEEE Transactions on Circuits and Systems I, Vol. 52, No. 11, pp. 2385-2396, November 2005.

    QR CODE