研究生: |
王政穎 Wang, Cheng-Ying |
---|---|
論文名稱: |
次世代電子元件: 鐵電矽鍺元件、氮化鎵、二維材料 Future Generation Electronics: Ferroelectric Gate SiGe FETs、GaN-based MOS-HEMT、Two-Dimensional Materials |
指導教授: |
李敏鴻
Lee, Min-Hung 鍾朝安 Jong, Chao-An |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 鐵電 、氮化鎵 、矽鍺 、二維材料 |
英文關鍵詞: | Ferroelectric, GaN, SiGe, Two-dimensional materials |
DOI URL: | http://doi.org/10.6345/THE.NTNU.EPST.018.2018.E08 |
論文種類: | 學術論文 |
相關次數: | 點閱:185 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來隨著物聯網(IoT)及穿戴式行動裝置的普及,電晶體發展朝向小尺寸、高效能及低功率。我們成功發展出可應用於未來世代的電子元件,如鐵電閘極矽鍺電晶體及其鐵電特性研究、氮化鎵、二維材料。
本研究將分為二硫化鎢(WS2)、氮化鎵、鐵電閘極矽鍺電晶體及其鐵電特性研究,第一部份為探討成長WS2製程方式,如製程溫度、時間、壓力、含氫量等。第二部分為利用AlGaN/GaN HEMT電晶體設計及特性表現元件,為閘極場平板元件,以及鐵電閘極矽鍺電晶體。第三部分為利用HfZrO2於鐵電材料分析及應用。以上元件,目標為降低操作電壓VDD,以降低元件的耗能,達到低功率目的。
The internet of things (IoT) and wearable applications become more popular in recent years. Therefore, it has became become necessary to develop small sized, high performance devices, and low power consumption.
This theory will be divided into two-dimensional materials, GaN-based MOS-HEMT, Ferroelectric Gate SiGe FETs and its characteristics. The first part, WS2 processes is presented such as process temperature, time, pressure, and Hydrogen to Argon ratio. The second part is AlGaN/GaN HEMTs including design and characteristics, which are gate field plate components. As well as ferroelectric gate SiGe FETs are presented in this session. The HfZrO2 with ferroelectric materials anylsis and application will be mentioned in third part. All electronics in this theory aims for reducing the operation voltage VDD, and being low-power devices.
[1] https://www.eetimes.com/document.asp?doc_id=1331766,20180630
[2] http://www.semi.org/en/node/55926,20180701
[3] A. K. Geim, and I. V. Grigorieva, “Van der Waals heterostructures, ” Nature, vol. 499, no. 7459, pp. 419, 2013.
[4] R. D. Booker, and E. Boysen, Nanotechnology for dummies: John Wiley & Sons, 2011.
[5] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors, ” ACS nano, vol. 6, no. 1, pp. 74-80, 2011.
[6] L. Xie, “Two-dimensional transition metal dichalcogenide alloys: preparation, characterization and applications, ” Nanoscale, vol. 7, no. 44, pp. 18392-18401, 2015.
[7] S. Mouri, Y. Miyauchi, and K. Matsuda, “Tunable photoluminescence of monolayer MoS2 via chemical doping, ” Nano letters, vol. 13, no. 12, pp. 5944-5948, 2013.
[8] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single-and few-layer MoS2, ” ACS nano, vol. 4, no. 5, pp. 2695-2700, 2010.
[9] Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, and J.-C. Charlier, “Identification of individual and few layers of WS2 using Raman Spectroscopy, ” Scientific reports, vol. 3, pp. 1755, 2013.
[10] P. Javorka, A. Alam, M. Wolter, A. Fox, M. Marso, M. Heuken, H. Luth, and P. Kordos, “AlGaN/GaN HEMTs on (111) silicon substrates, ” IEEE Electron Device Letters, vol. 23, no. 1, pp. 4-6, 2002.
[11] R. T. Kemerley, H. B. Wallace, and M. N. Yoder, “Impact of wide bandgap microwave devices on DoD systems, ” Proceedings of the IEEE, vol. 90, no. 6, pp. 1059-1064, 2002.
[12] F. Sacconi, A. Di Carlo, P. Lugli, and H. Morkoc, “Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs, ” IEEE Transactions on electron devices, vol. 48, no. 3, pp. 450-457, 2001.
[13] P. Javorka, “Fabrication and Characterization of AIGaN/GaN High Electron Mobility Transistors, ” Citeseer, 2004.
[14] T. Boescke, J. Heitmann, and U. Schroder, “Integrated Circuit With Dielectric Layer, “ U.S. Patent No. 14, 7709359B2 (4 May, 2010)
[15] T. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, "Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors." in IEDM Tech. Dig., Dec. 2011, pp.547-550.
[16] P. Polakowski, S. Riedel, W. Weinreich, M. Rudolf, J. Sundqvist, K. Seidel, and J. Muller, "Ferroelectric deep trench capacitors based on Al: HfO2 for 3D nonvolatile memory applications.".IMW,May,2014.
[17] C. H. Cheng, and A. Chin, “Low-voltage steep turn-on pMOSFET using ferroelectric high-$ kappa $ gate dielectric,” IEEE Electron Device Lett., vol. 35, no. 2, pp. 274-276, 2014.
[18] M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, and C. S. Hwang, “Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric HfxZr1−xO2 films, ” Nano Energy, vol. 12, pp.131-140, Dec. 2015.
[19] Y.-C. Chiu, C.-H. Cheng, C.-Y. Chang, M.-H. Lee, H.-H. Hsu and S.-S. Yen, “Low Power 1T DRAM/NVM Versatile Memory Featuring Steep Sub-60-mV/decade Operation, Fast 20-ns Speed, and Robust 85oC-Extrapolated 1016 Endurance, ” in VLSI Symp., in VLSI Technology Symp., Jun. 2015, pp. T184-T185.
[20] S. Fujii, Y. Kamimuta, T. Ino, Y. Nakasaki, R. Takaishi, and M. Saitoh, "First demonstration and performance improvement of ferroelectric HfO 2-based resistive switch with low operation current and intrinsic diode property." in VLSI Technology Symp., Jun. 2016, pp. 148-149.
[21] H. Mulaosmanovic, J. Ocker, S. Müller, M. Noack, J. Müller, P. Polakowski, T. Mikolajick, and S. Slesazeck, "Novel ferroelectric FET based synapse for neuromorphic systems." in VLSI Technology Symp., Jun. 2017, pp. T176-T177
[22] J. Van Houdt, "Memory technology for the terabit era: From 2D to 3D." in VLSI Technology Symp., Jun. 2017, pp. T24-T25.
[23] K.-S. Li, P.-G. Chen, T.-Y. Lai, C.-H. Lin, C.-C. Cheng, C.-C. Chen, Y.-J. Wei, Y.-F. Hou, M.-H. Liao, and M.-H. Lee, "Sub-60mV-swing negative-capacitance FinFET without hysteresis. " in IEDM Tech. Dig., Dec. 2015, pp. 620-623.
[24] M. H. Lee, P.-G. Chen, C. Liu, K-Y. Chu, C.-C. Cheng, M.-J. Xie, S.-N. Liu, J.-W. Lee, S.-J. Huang, M.-H. Liao, M. Tang, K.-S. Li, and M.-C. Chen, “Prospects for Ferroelectric HfZrOx FETs with Experimentally CET=0.98nm, SSfor=42mV/dec, SSrev=28mV/dec, Switch-OFF, ” in IEDM Tech. Dig., Dec. 2015, pp. 616-619.
[25] M. Lee, S.-T. Fan, C.-H. Tang, P.-G. Chen, Y.-C. Chou, H.-H. Chen, J.-Y. Kuo, M.-J. Xie, S.-N. Liu, and M.-H. Liao, "Physical thickness 1. x nm ferroelectric HfZrOx negative capacitance FETs." in IEDM Tech. Dig., Dec. 2016, pp. 306-309.
[26] S. Salahuddin and S. Datta, “Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices, ” NanoLetters, vol. 8, no. 2, pp. 405-410, Dec. 2008.
[27] S. Salahuddin, and S. Datta, "Can the subthreshold swing in a classical FET be lowered below 60 mV/decade?." in IEDM Tech. Dig., Dec. 2008, pp. 693-696.
[28] J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick, “Ferroelectricity in simple binary ZrO2 and HfO2, ” Nano letters, vol. 12, no. 8, pp. 4318-4323, 2012.