簡易檢索 / 詳目顯示

研究生: 蘇郁茜
Yu-Chien, Su
論文名稱: 奈米級尺寸顆粒 Bi1-xDyxFeO3 多鐵材料之光譜性質研究
Optical studies of nano-sized multiferroic Bi1-xDyxFeO3 grains
指導教授: 劉祥麟
Liu, Hsiang-Lin
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 128
中文關鍵詞: 鉍鐵氧奈米顆粒多鐵光譜研究
英文關鍵詞: BiFeO3, nano-sized grains, multiferroic, optical studies
論文種類: 學術論文
相關次數: 點閱:148下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究奈米級尺寸顆粒 Bi1-xDyxFeO3(x = 0.00、0.05、0.10、0.15、0.20、0.30、0.40)多鐵材料的全頻反射與拉曼散射光譜。隨著摻雜鏑離子濃度的增加,紅外光與拉曼活性振動模的變化符合x 光繞射能譜的晶格結構分析:(i)0.00 ≤ x ≤ 0.05 屬於空間群 R3c 菱形晶系結構;(ii)0.20 ≤ x ≤ 0.40屬於空間群 Pnma 正交晶系結構;(iii)x = 0.10與 0.15 顯示兩相共存狀態。此外,高頻紅外光吸收與拉曼散射光譜展現多倍磁振子的貢獻,代表鏑離子的摻雜和奈米級尺寸顆粒導致Bi1-xDyxFeO3本身磁性結構的改變。更有趣地是低頻拉曼散射光譜顯現擴散響應,我們認為鏑離子的摻雜引起晶格局部扭曲,降低電荷的漂移率,造成Bi1-xDyxFeO3的電性傳導屬於電荷躍遷機制。
    高溫拉曼散射光譜顯示:(i)在預期的尼爾溫度附近,各拉曼峰的參數(頻率位置、半高寬、及強度)並未發生明顯地異常變化,這代表自旋與聲子的交互作用微弱;(ii)擴散響應之半高寬隨溫度升高而變小,Bi1-xDyxFeO3電荷彼此之間的碰撞率降低,暗指其電性傳導愈佳化。

    We present the results of infrared, optical reflectivity and Raman-scattering measurements of nano-sized Bi1-xDy xFeO3 (x = 0, 0.05, 0.10, 0.20, 0.30, and 0.40) polycrystalline samples. It is found that when doping with Dy on Bi-site, the variations of infrared and Raman-active phonon modes are consistent with the analysis of x-ray powder diffraction spectra: (i) rhombohedral space group R3c as 0.00 ≤ x ≤ 0.05;(ii) dominant orthorhombic group Pnma as 0.20 ≤ x ≤ 0.40; and (iii) rhombohedral and orthorhombic mixings as x = 0.10 and 0.15. Moreover, multimagnon excitations are observed in both infrared absorption and high-frequency Raman-scattering spectra, indicating Dy doping and the nano-sized grains modify the magnetic structures of these materials. Interestingly, low-frequency Raman-scattering spectra exhibit diffusive response, reflecting the substitution of Dy for Bi induces the local lattice distortion and a concomitant reduction in the carrier mobility which manifest in the carrier hopping mechanism in Bi1-xDy xFeO3.
    With increasing temperature, there are two important features to the Raman-scattering spectra: (i) no detectable phonon anomalies are observed near the Néel temperature, suggesting the spin-phonon coupling is weak; and (ii) the scattering rate of diffusive hopping of the carriers is decreasing, indicating the enhancement of conductivity in these materials.

    致謝 i 中文摘要 iii 英文摘要 iv 目錄 v 表目錄 vii 圖目錄 ix 第一章 緒論 1 第二章 研究背景 8 2-1 磁電效應 8 2-2 多鐵特性─BiFeO3 12 2-3 BiFeO3 光譜性質之文獻探討 14 第三章 實驗儀器設備及基本原理 31 3-1 光譜儀系統 31 3-2 光譜分析原理介紹 35 3-2-1 拉曼散射原理 35 3-2-2 反射光譜原理 38 第四章 實驗樣品特性 46 4-1 樣品製程 46 4-2 樣品物性 47 第五章 實驗結果與討論 59 5-1 全頻光譜研究 59 5-2 拉曼散射光譜研究 65 第六章 結論與未來展望 119 參考文獻 122

    [1] N. Hur, S. Park, P. A. Sharma, J.S. Ahn, S. Guha, and S.W. Cheong, “Electric polarization reversal and memory in a multiferroic material induced by magnetic fields”, Nature 429, 392 (2004).
    [2] T. Zhao, A. Scholl, F. Zavalich, K. Lee, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Baek, C. B. Eom, and R. Ramesh, “Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature”, Nature Materials 5, 823 (2006).
    [3] P. Curie, “Sur la symétrie dans les phénomènes physiques. Symétrie d'un champ électrique et d'un champ magnétique”, J. Physique 3, 393 (1894).
    [4] D. N. Astrov, “Magnetoelectric effect in antiferromagnetics”, Sov. Phys.—JETP 11, 708 (1960).
    [5] J. Valasek, “Piezoelectric and allied phenomena in Rochelle salt”, Phys. Rev. 15, 537 (1920).
    [6] A. Perrier, A. J. Staring, Arch. Sci. Phys. Nat. (Geneva) 4, 373 (1922).
    [7] A. Perrier, A. J. Staring, Arch. Sci. Phys. Nat. (Geneva) 5, 333 (1923).
    [8] I. E. Dzyaloshinskii, “On the magneto-electrical effects in antiferromagnets”, Sov. Phys.—JETP 10, 628 (1959).
    [9] B.I. Alshin and D.N. Astrov, “Magnetoelectric effect in titanium oxide Ti2O3”, Sov. Phys.—JETP 17, 809 (1963).
    [10] E. Ascher, H. Rieder, H. Schmid, and H. Stoessel, “Some properties of ferromagnetoelectric nickel‐iodine boracite, Ni3B7O13I”, J. Appl. Phys. 37, 1404 (1966).
    [11] C. Michel, J.M. Moreau, G.D. Achenbach, R.Gerson, and W.J. James, “The atomic structure of BiFeO3”,Solid State Comm. 7, 701 (1969).
    [12] G. T. Rado, “Observation and possible mechanisms of magnetoelectric effects in a ferromagnet”, Phys. Rev. Lett. 13, 335 (1964).
    [13] B. B. Krichevtsov, V. V. Pavlov, and R. V. Pisarev, “Giant linear magnetoelectric effect in garnet ferrite films”, JETP Lett. 49, 535 (1989).
    [14] G.T. Rado, J.M. Ferrari, and W.G. Maisch, “Magnetoelectric susceptibility and magnetic symmetry of magnetoelectrically annealed TbPO4”, Phys. Rev. B 29, 4041 (1984).
    [15] J. P. Rivera, “The linear magnetoelectric effect in LiCoPO4 revisited”, Ferroelectrics 161, 147 (1993).
    [16] H. Schmid, “Introduction to the proceedings of the 2nd international conference on magnetoelectric interaction phenomena in crystals”, MEIPIC-2. Ferroelectrics 161, 1 (1994).
    [17] M. I. Bichurin, “Short introduction to the proceedings of the 3rd international conference on magnetoelectric interaction phenomena in crystals”, MEIPIC-3. Ferroelectrics 204, 17 (1997).
    [18] T. Watanabe and K. Kohn, “Magnetoelectric effect and low-temperature transition of PbFe0.5Nb0.5O3 single-crystal”, Phase Trans. 15, 57 (1989).
    [19] M. Bibes and A. Barthelemy, “Towards a magnetoelectric memory”, Nature materials 7, 425 (2008).
    [20] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, “Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices”, Phys. Rev. Lett. 61, 2472 (1988).
    [21] http://en.wikipedia.org/wiki/Pockels_cell
    [22] 吳宗展,龐磁阻磁穿隧之研究,國立中山大學物理研究所碩士論文,91年10月。
    [23] N. A. Hill, “Why are there so few magnetic ferroelectrics”, J. Phys. Chem. B 104, 6694 (2000).
    [24] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, “Magnetic control of ferroelectric polarization”, Nature (London) 426, 55 (2003).
    [25] 湯詠秀,多鐵性(Bi,Ln)FeO3之結構、磁性及介電性研究,國立臺灣師範大學物理研究所碩士論文,98年6月。
    [26] J. Okamoto, D. J. Huang, C. Y. Mou, K. S. Chao, H. J. Lin, S. Park, S-W. Cheong, and C. T. Chen, “Symmetry of multiferroicity in a frustrated magnet TbMn2O5”, Phys. Rev. Lett. 98, 157202 (2007).
    [27] M. Mostovoy, “Ferroelectricity in spiral magnets”, Phys. Rev. Lett. 96, 067601 (2006).
    [28] L. C. Chapon, G. R. Blake, M. J. Gutmann, S. Park, N. Hur, P. G. Radaelli, and S-W. Cheong, “Structural anomalies and multiferroic behavior in magnetically frustrated TbMn2O5”, Phys. Rev. Lett. 93, 177402 (2004).
    [29] I. E. Sergienko, C. Sen, and E. Dagotto, “Ferroelectricity in the magnetic E-phase of orthorhombic perovskites”, Phys. Rev. Lett. 97, 227204 (2006).
    [30] I. A. Sergienko and E. Dagotto, “Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites”, Phys. Rev. B 73, 094434 (2006).
    [31] H. Katsura, N. Nagaosa, and A. V. Balatsky, “Spin current and magnetoelectric effect in noncollinear magnets”, Phys. Rev. Lett. 95, 057205 (2005).
    [32] P. Royen and K. Swars, “Das system wismutoxyd-eisenoxyd in bereich von 0 bis 55 mol% eisenoxyd", Angew. Chem. 69, 779 (1957).
    [33] G. A. Smolenskii, V.A. Isupov, A. I .Agranovskaya, and N. N. Krainik, “New ferroelectrics of complex compositeon”, Sov. Phys. Solid State 2, 2651 (1961) .
    [34] P. Fischer, M. PoIomska, I. Sosnowska, and M. Szymanski, “Temperature dependence of the crystal and magnetic structures of BiFeO3”, J. Phys. C: Solid State Phys. 13, 1931 (1980).
    [35] F. Bai, J. Wang, M. Wuttig, J. F. Li, N. Wang, A. P. Pyatakov, A. K. Zvezdin, L. E. Cross, and D. Viehland, “Destruction of spin cycloid in (111)c-oriented BiFeO3 thin films by epitiaxial constraint: Enhanced polarization and release of latent magnetization” Appl. Phys. Lett. 86, 032511 (2005).
    [36] C. Ederer and N. A. Spaldin, “Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite”, Phys. Rev. B. 71, 060401 (2005).
    [37] Y. H. Chu, L. W. Martin, M. B. Holcomb, and R. Ramesh, “Controlling magnetism with multiferroics”, Mater. Today 10, 16 (2007) .
    [38] P. Hermet, M. Goffinet, J. Kreisel, and Ph. Ghosez, “Raman and infrared spectra of multiferroic bismuth ferrite from first principles”, Phys. Rev. B 75, 220102(R) (2007).
    [39] H. Fukumuraa, H. Harimaa, K. Kisodab, M. Tamadac, Y. Noguchic, and M. Miyayama, “Raman scattering study of multiferroic BiFeO3 single crystal”, J. Magn. Magn. Mater. 310, e367 ( 2007 ).
    [40] S. Kamba, D. Nuzhnyy, M. Savinov, J. Šebek, and J. Petzelt, “Infrared and terahertz studies of polar phonons and magnetodielectric effect in multiferroic BiFeO3 ceramics”, Phys. Rev. B 75, 024403 (2007).
    [41] H. M. Tütüncü and G. P. Srivastava, “Electronic structure and zone-center phonon modes in multiferroic bulk BiFeO3”, J. Appl. Phys. 103, 083712 (2008).
    [42] M. Cazayous, D. Malka, D. Lebeugle, and D. Colson, “Spin-charge-lattice coupling through resonant multimagnon excitations in multiferroic BiFeO3”, Appl. Phys. Lett. 91, 071910 (2007).
    [43] M. K. Singh, H. M. Jang, S. Ryu, and M. H. Jo, “Polarized Raman scattering of multiferroic BiFeO3 epitaxial films with rhombohedral R3c symmetry”, Appl. Phys. Lett. 88, 042907 (2006).
    [44] R. Haumont, J. Kreisel, P. Bouvier, and F. Hippert, “Phonon anomalies and the ferroelectric phase transition in multiferroic BiFeO3”, Phys. Rev. B 73, 132101 (2006).
    [45] R. Palai, H. Schmid, J. F. Scott, and R. S. Katiyar, “Raman spectroscopy of single-domain multiferroic BiFeO3”, Phys. Rev. B. 81, 064110 (2010).
    [46] M. K. Singh and R. S. Katiyar, “Phonon anomalies near the magnetic phase transitions in BiFeO3 thin films with rhombohedral R3c symmetry”, J. Appl. Phys. 109, 07D916 (2011).
    [47] M. O. Ramirez, A. Kumar, S. A. Denev, N. J. Podraza, X. S. Xu, R. C. Rai, Y. H. Chu, J. Seidel, L. W. Martin, S. Y. Yang, E. Saiz, J. F. Ihlefeld, S. Lee, J. Klug, S. W. Cheong, M. J. Bedzyk, O. Auciello, D. G. Schlom, R. Ramesh, J. Orenstein, J. L. Musfeldt, and V. Gopalan1, “Magnon sidebands and spin-charge coupling in bismuth ferrite probed by nonlinear optical spectroscopy”, Phys. Rev. B 79, 224106 (2009).
    [48] M. O. Ramirez, A. Kumar, S. A. Denev, Y. H. Chu, J. Seidel, L. W. Martin, S. Y. Yang, R. C. Rai, X. S. Xue, J. F. Ihlefeld, N. J. Podraza, E. Saiz, S. Lee, J. Klug,S. W. Cheong, M. J. Bedzyk, O. Auciello, D. G. Schlom, J. Orenstein, R. Ramesh, J. L. Musfeldt, A. P. Litvinchuk, and V. Gopalan, “Spin-charge-lattice coupling through resonant multimagnon excitations in multiferroic BiFeO3”, Appl. Phys. Lett. 94, 161905 (2009).
    [49] Charles Kittel , “Introduction to solid state physics”, 8th edition, John Willey &Sons, Inc. (2006).
    [50] M. J. Massey, U. Baier, R. Merlin, and W. H. Weber, “Effects of pressure and isotopic substitution on the Raman spectrum of -Fe203 : Identification of two-magnon scattering”, Phys. Rev. B. 41, 7822 (1990).
    [51] J. W. Lin, Y. H. Tang, C. S. Lue, and J. G. Lin, “Electron spin resonance probed suppressing of the cycloidal spin structure in doped bismuth ferrites”, Appl. Phys. Lett. 96, 232507 (2010).
    [52] Y. F. Cui, Y. G. Zhao, L. B. Luo, J. J. Yang, H. Chang, M. H. Zhu, D. Xie, and T. L. Ren, “Dielectric, magnetic, and magnetoelectric properties of La and Ti codoped BiFeO3”, Appl. Phys. Lett. 97, 222904 (2010).
    [53] http://www.americanelements.fr/newpage11.htm
    [54] 黃詩雯、黃迪靖,以軟 x 光探索『多鐵相變』,物理雙月刊,第五卷,第卅一卷,頁 501 - 507,2009。
    [55] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu1, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures”, Science 299, 1719 (2003).
    [56] 翁士民,高溫超導銅氧化物Y1-xCaxBa2Cu3Oy和Y1-xPrxBa2Cu4O8之光譜研究,國立臺灣師範大學物理研究所碩士論文,93 年 6 月。
    [57] 鄧勃、寧永成、劉密新著,儀器分析,清華大學出版社出版,中華民國八十年五月第一版。
    [58] T.-J. Park, G. C. Papaefthymiou, A. J Viescas, A. R. Moodenbaugh, and S. S. Wong, “Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles”, Nano Lett. 7, 766 (2007).
    [59] B. F. Gao, X. Chen, K. Yin, S. Dong, Z. Ren, F. Yuan, T. Yu, Z. Zou, and J.-M. Liu, “Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles”, Adv. Mater. 19, 2889 (2007).
    [60] M. Chen, D. B. Tanner, and J. C. Nino, “Infrared study of the phonon modes in bismuth pyrochlores’’, Phys. Rev. B 72, 054303 (2005).
    [61] M. N. Iliev, M. V. Abrashev, D. Mazumdar, V. Shelke, and A. Gupta, “Polarized Raman spectroscopy of nearly tetragonal BiFeO3 thin films”, Phys. Rev. B 82, 014107 (2010).
    [62] R. P. S. M. Lobo, R. L. Moreira, D. Lebeugle, and D. Colson, “Infrared phonon dynamics of a multiferroic BiFeO3 single crystal”, Phys. Rev. B 76, 172105 (2007).
    [63] W. G. Spitzer, R. C. Miller, D. A. Kleinman, and L. E. Howarth “ Far infrared dielectric dispersion in BaTiO3, SrTiO3, and TiO2”, Phys. Rev. 126, 1710 (1962).
    [64] 張凱程,以圓柱形介質共振腔量測鋅奈米微顆粒之介電常數,國立清華大學光電工程研究所碩士論文,97年6月。
    [65] A. Jaiswal, R. Das, T. Maity, K. Vivekanand, S. Adyanthaya, and P. Poddar, “Temperature-dependent Raman and dielectric spectroscopy of BiFeO3 nanoparticles : Signatures of spin-phonon and magnetoelectric coupling”, J. Phys. Chem. C 114, 12432 (2010).
    [66] D. Kothari, V. R. Reddy, V. G. Sathe, A. Gupta, A. Banerjee, and A.M. Awasthi, “Raman scattering study of polycrystalline magnetoelectric BiFeO3”, J. Magn. Magn. Mater. 320, 548 (2008).
    [67] S. Yoon, H. L. Liu, G. Schollerer, S. L. Cooper, P. D. Han, D. A. Payne, and S.-W. Cheong, “Raman and optical spectroscopic studies of small-to-large polaron crossover in the perovskite manganese oxides”, Phys. Rev. B 58, 2795 (1998).
    [68] P. Thakuria, and P. A. Joy, “High room temperature ferromagnet of Ho substituted nanocrystalline BiFeO3”, Appl. Phys. Lett. 97, 162504 (2010).
    [69] G. L. Yuan, S. W. Or, and H. L. W. Chan, “Reduced ferroelectric coercivity in multiferroic Bi0.825Nd0.175FeO3 thin film”, J. Appl. Phys. 101, 24106 (2007).
    [70] P. Rovillain, M. Cazayous, Y. Gallais, A. Sacuto, R. P. S. M. Lobo, D. Lebeugle, and D. Colson, “Polar phonons and spin excitations coupling in multiferroic BiFeO3 crystals”, Phys. Rev. B. 79, 180411 (2009).

    下載圖示
    QR CODE