簡易檢索 / 詳目顯示

研究生: 鐘冠蘭
Chung, Kuan-Lan
論文名稱: 探討1-Thio-β-D-glucose表面修飾螢光金奈米團簇於腦瘤細胞、大腸桿菌與線蟲代謝後之螢光變化
Studies of Fluorescence Changes of 1-Thio-β-D-glucose Modified Gold Nanoclusters in U-87 MG, E. coli and C. elegans
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 73
中文關鍵詞: 螢光金奈米團簇表面修飾1-Thio-β-D-glucose螢光成像生物感測瓦氏效應
英文關鍵詞: Fluorescent Gold Nanoclusters, Surface Modification, 1-Thio-β-D-glucose, Fluorescence Imaging, Biosensor, Warburg Effect
DOI URL: https://doi.org/10.6345/NTNU202202488
論文種類: 學術論文
相關次數: 點閱:211下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 螢光金奈米團簇(Gold Nanoclusters, Au NCs)具有獨特的光學性質、易於進行表面修飾及良好的生物相容性等優點,使其具有生物顯影及生物感測之應用性。本研究利用穀胱甘肽做為還原劑製備出發橘紅色螢光之金奈米團簇,並以β-D硫代葡萄糖(1-Thio-β-D-glucose)修飾其表面,合成出表面修飾葡萄糖之螢光金奈米團簇(TGlu-Au NCs)。我們利用顯微注射及餵食的方式,使TGlu-Au NCs進入秀麗隱桿線蟲(C. elegans)體內,在線蟲的咽、體腔及肛門都能清楚看到TGlu-Au NCs的螢光成像。使用大腸桿菌(E. coli)觀察TGlu-Au NCs的螢光變化,得到大腸桿菌濃度上升會使TGlu-Au NCs螢光強度下降之結果,顯示TGlu-Au NCs做為生物感測器之潛力。另將腦瘤細胞之糖酵解酶取出與TGlu-Au NCs反應,發現TGlu-Au NCs的螢光強度隨著反應時間愈長而下降愈多,顯示腫瘤細胞發生糖解作用,證實TGlu-Au NCs可利用腦瘤細胞的瓦氏效應行標記之作用。

    Fluorescent gold nanoclusters have been widely employed in the bioimaging and biosensing because of their unique optical properties, facile surface modification and high biocompatibility. In this study, we used L-Glutathione as a reductant to prepared fluorescent gold nanoclusters (Au NCs) and then the surface of Au NCs was modified with 1-Thio-β-D-glucose (TGlu-Au NCs). TGlu-Au NCs were respectively microinjected and fed into C. elegans to investigate their in vivo fluorescence imaging. The fluorescence of TGlu-Au NCs was easily visible in the lumen of the digestive system, extending from the pharynx to the anal region. Furthermore, the fluorescence changes of TGlu-Au NCs were studied with E. coli. TGlu-Au NCs at 0.4 (O.D.) showed higher decreasing rate of fluorescence intensity than that of TGlu-Au NCs at 0.27 (O.D.). In addition, the glycolytic enzyme of brain tumor cells (U-87 MG) was added into TGlu-Au NCs solution. After the reaction with the glycolytic enzyme, the fluorescence intensity of TGlu-Au NCs was decreased with the increase of time. The results confirmed the Warburg effect of TGlu-Au NCs in brain tumor cell.

    摘要 I Abstract II 總目錄 III 圖目錄 VI 第一章 緒論 1 1-1 前言 1 1-2 奈米材料之簡介 3 1-2-1 表面效應(Surface Effect) 4 1-2-2 小尺寸效應(Small Size Effect) 5 1-2-3 量子侷限效應(Quantum Confinement Effect) 7 1-3 金屬奈米材料 9 1-3-1 金屬奈米材料之製備方法 9 1-3-2 金屬奈米材料之特性 12 第二章 文獻回顧與研究動機 14 2-1 金奈米材料 14 2-2 金奈米團簇 16 2-2-1 金奈米團簇之製備方法 18 2-2-2 不同模板之金奈米團簇 21 2-2-3 金奈米團簇發光機制 25 2-2-4 金奈米團簇之應用 26 2-3 秀麗隱桿線蟲之簡介 28 2-4 大腸桿菌之簡介 30 2-5 人類腦神經膠質瘤細胞之簡介 32 2-6 以TGlu-Au NCs標記腫瘤細胞之簡介 33 2-7 研究動機 34 第三章 實驗設備與方法 35 3-1 實驗藥品 35 3-2 儀器設備基本原理 36 3-2-1 高速離心機(High-Speed Centrifuge) 36 3-2-2 紫外─可見光分光光譜儀(UV-Visible/NIR Spectrophotometer) 37 3-2-3 光致發光光譜儀(Photoluminescence Spectrometer, PL) 38 3-2-4 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 39 3-2-5 能量色散X射線光譜儀(Energy-Dispersive X-Ray Spectrometer, EDS) 39 3-2-6 傅立葉轉換紅外光譜儀(Fourier Transform Infrared Spectrometer, FTIR) 40 3-2-7 分光光度計(Spectrophotometer) 41 3-2-8 雷射掃描共軛焦顯微鏡(Laser Scanning Confocal Microscopy, LSCM) 42 3-3 實驗流程 43 3-3-1 GSH-Au NCs之合成 43 3-3-2 TGlu-Au NCs之合成 44 3-3-3 秀麗隱桿線蟲之培養 47 3-3-3-1 顯微注射秀麗隱桿線蟲 47 3-3-3-2 餵食秀麗隱桿線蟲 48 3-3-4 大腸桿菌之培養 49 3-3-5 從U-87 MG中取出糖酵解酶 50 第四章 結果與討論 51 4-1 材料鑑定 51 4-1-1 GSH-Au NCs與TGlu-Au NCs之形狀與光學特性 51 4-1-2 GSH-Au NCs與TGlu-Au NCs之傅立葉轉換紅外光譜 54 4-1-3 TGlu-Au NCs之元素分析 56 4-2 TGlu-Au NCs應用於秀麗隱桿線蟲 57 4-2-1 顯微注射秀麗隱桿線蟲之結果 57 4-2-2 以TGlu-Au NCs培養秀麗隱桿線蟲之結果 58 4-3 TGlu-Au NCs應用於大腸桿菌 61 4-3-1 不同時間與條件下之大腸桿菌濃度變化 61 4-3-2 不同時間與條件下之TGlu-Au NCs螢光變化 63 4-4 糖酵解酶與TGlu-Au NCs螢光變化 67 第五章 結論與未來展望 69 參考文獻 70

    [1] 馬遠榮,科學發展 2004,382,73–75。
    [2] 牟中原、陳家俊,科學發展 2000,28 (4),281–288。
    [3] 李傳宏、黃佩珍、盧成基、彭國光、徐文泰,奈米技術專刊 2001,60–68。
    [4] 陳學仕,化工科技與商情 2002,36,11–14。
    [5] Schmid, G.; Corain, B. Eur. J. Inorg. Chem. 2003, 17, 3081–3098.
    [6] White, S. E.; Cataluna, M. A. Photonics 2015, 2 (2), 719–744.
    [7] De Mello Donegá, C. Chem. Soc. Rev. 2011, 40, 1512–1546.
    [8] 郭清癸、黃俊傑、牟中原,物理雙月刊 2001,23 (6),614–624。
    [9] 楊雲凱,奈米通訊 2015,22 (4),33–35。
    [10] 曾賢德,物理雙月刊 2010,32 (2),126–135。
    [11] Peiris, S.; McMurtrie, J.; Zhu, H. Y. Catal. Sci. Technol. 2016, 6, 320–338.
    [12] Faraday, M. Phil. Trans. R. Soc. Lond. 1857, 147, 145–181.
    [13] Zsigmondy, R. Liebig's Ann. 1898, 301 (1), 29–54.
    [14] Romano, E. L.; Romano, M. Immunochemistry 1977, 14 (9–10), 711–715.
    [15] Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103 (21), 4212–4217.
    [16] Han, G.; Ghosh, P.; Rotello, V. M. Nanomedicine 2007, 2 (1), 113–123.
    [17] Huang, X.; El-Sayed, M. A. J. Adv. Res. 2010, 1 (1), 13–28.
    [18] Mackey, M. A.; Ali, M. R. K.; Austin, L. A.; Near, R. D.; El-Sayed, M. A. J. Phys. Chem. B 2014, 118 (5), 1319–1326.
    [19] Wilcoxon, J. P.; Abrams, B. L. Chem. Soc. Rev. 2006, 35, 1162–1194.
    [20] Zhang, L.; Wang, E. Nano Today 2014, 9, 132–157.
    [21] Chen, T.; Luo, Z.; Yao, Q.; Yeo, A. X. H.; Xie, J. Chem. Commun. 2016, 52, 9522–9525.
    [22] Schmid, G. Chem. Rev. 1992, 92 (8), 1709–1727.
    [23] Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. J. Chem. Soc., Chem. Commun. 1994, 801–802.
    [24] Brust, M.; Fink, J.; Bethell, D.; Schiffrin, D. J.; Kiely, C. J. Chem. Soc., Chem. Commun. 1995, 1655–1656.
    [25] Popova, E. V.; Gamzaeva, S. A.; Krivoshey, A. I.; Kryshtal, A. P.; Fedoryako, A. P.; Prodanov, M. F. et al. Liq. Cryst. 2015, 42 (3), 334–343.
    [26] Gröhn, F.; Bauer, B. J.; Akpalu, Y. A.; Jackson, C. L.; Amis, E. J. Macromolecules 2000, 33 (16), 6042–6050.
    [27] Zheng, J.; Petty, J. T.; Dickson, R. M. J. Am. Chem. Soc. 2003, 125 (26), 7780–7781.
    [28] Liu, G.; Shao, Y.; Ma, K.; Cui, Q.; Wu, F.; Xu, S. Gold Bull. 2012, 45 (2), 69–74.
    [29] Xie, J.; Zheng, Y.; Ying, J. Y. J. Am. Chem. Soc. 2009, 131 (3), 888–889.
    [30] Tu, X.; Chen, W.; Guo, X. Nanotechnology 2011, 22 (9), 095701.
    [31] Lin, C. A. J.; Lee, C. H.; Hsieh, J. T.; Wang, H. H.; Li, J. K.; Shen, J. L. et al. J. Med. Biol. Eng. 2009, 29 (6), 276–283.
    [32] Zhou, C.; Sun, C.; Yu, M.; Qin, Y.; Wang, J.; Kim, M. et al. J. Phys. Chem. C 2010, 114 (17), 7727–7732.
    [33] Hu, L.; Han, S.; Parveen, S.; Yuan, Y.; Zhang, L.; Xu, G. Biosens. Bioelectron. 2012, 32, 297–299.
    [34] Li, C. H.; Kuo, T. R.; Su, H. J.; Lai, W. Y.; Yang, P. C.; Chen, J. S. et al. Sci. Rep. 2015, 5, 15675.
    [35] The C. elegans Sequencing Consortium Science. 1998, 282 (5396), 2012–2018.
    [36] Mohan, N.; Chen, C. S.; Hsieh, H. H.; Wu, Y. C.; Chang, H. C. Nano Lett. 2010, 10 (9), 3692–3699.
    [37] Zhukova, L. V.; Kiwi, J.; Nikandrov, V. V. Colloids Surf., B 2012, 97, 240–247.
    [38] Jung, W. K.; Koo, H. C.; Kim, K. W.; Shin, S.; Kim, S. H.; Park, Y. H. Appl. Environ. Microbiol. 2008, 74 (7), 2171–2178.
    [39] Blattner, F. R.; Plunkett, G. P.; Bloch, C. A.; Perna, N. T.; Burland, V.; Riley, M. et al. Science. 1997, 277 (5331), 1453–1462.
    [40] Liu, Y.; Yang, Y.; Zhang, C. Int. J. Nanomedicine. 2013, 8, 1083–1093.
    [41] Clark, M. J.; Homer, N.; O’Connor, B. D.; Chen, Z.; Eskin, A.; Lee, H. et al. PLoS Genet. 2010, 6 (1), e1000832.
    [42] 蕭竹彣,國立臺灣師範大學化學系研究所碩士論文 2016。

    無法下載圖示 本全文未授權公開
    QR CODE