簡易檢索 / 詳目顯示

研究生: 吳榮修
Wu Jung-Hsiu
論文名稱: 石油廢觸媒之反應活性及對水泥質材料性質之影響
指導教授: 許貫中
Hsu, Kung-Chung
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 75
中文關鍵詞: 石油廢觸媒波索蘭反應水泥漿砂漿抗壓強度熱示差掃瞄儀活性粉混凝土
英文關鍵詞: Epcat, pozzolanic reaction, cement paste, mortar, compressive strength, DSC, reactive powder concrete
論文種類: 學術論文
相關次數: 點閱:391下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石油廢觸媒(Epcat)來自於石油裂解廠的廢觸媒,主要由Al2O3及SiO2所組成,且具有部份非結晶相和波索蘭材料之特性,預期應具波索蘭活性。
    本實驗分為三部分進行。第一部份將Epcat添加至水泥漿及砂漿中觀察抗壓強度變化。在不同實驗配比下(水膠比0.2、0.25、0.3, Epcat取代水泥量為0、5%、10%、15%),添加強塑劑MTP維持各配比之工作度,養護後量測試體3、7、28天的抗壓強度。實驗結果顯示,Epcat能提升水泥漿及砂漿的強度,且以砂漿增加的幅度為大。例如水膠比0.3且5~15%Epcat取代的配比,在3~28天齡期,砂漿強度比控制組增加13%~41%,而水泥漿強度僅增加1%~14%。
    而當水膠比從0.3降至0.25,或Epcat取代量增加時,抗壓強度增加效應更明顯。砂漿強度增加的原因不僅僅是Epcat增加水泥漿的強度,更強化了骨材與水泥漿間鍵結。不過當水膠比降至0.2時,因維持流度而添加過多MTP,使整個強度效應變得不明顯。
    第二部分利用熱示差掃描儀(DSC)來分析探討Epcat之波索蘭活性。實驗方面拌製純水泥漿體與含5~30 %廢觸媒取代水泥的漿體(水膠比0.3),讓其水化1~28天後,取樣以DSC測定並且確認DSC圖上對應於水泥水化產物如氫氧化鈣、C-S-H膠體、和鈣釩石(AFt)的吸熱峰。結果顯示含廢觸媒的水泥漿體比不含者產生較多的C-S-H膠體但卻較少氫氧化鈣,足以證明這種廢觸媒確實有波索蘭活性,可與氫氧化鈣進行波索蘭反應而加速水泥水化作用;當漿體含有的廢觸媒越多,或者水化時間越長,則產生的C-S-H膠體便越多,而氫氧化鈣便越少。
    第三部分以Epcat部分或全部取代活性粉混凝土(RPC)配比中之矽灰。結果顯示,在3、7、28天齡期Epcat取代量為67%時,抗壓強度分別達到72、100和115 MPa,比控制組增加14~30%,原因是Epcat之波索蘭活性比SF大,而加速反應所致。

    Epcat, a waste catalyst from oil crackers, composed mainly alumina and silica, is expected to have pozzolanic activity.
    In this study, pastes and mortars with Epcat were prepared and cured, and their compressive strengths after 3, 7 and 28 curing days were measured. The water/binder (W/B) ratios were 0.2, 0.25 and 0.3, and the replacement levels of cement by Epcat were 0, 5, 10 and 15 wt %. Proper amount of superplasticizer was added into each mix to ensure similar workability. The results indicate that the presence of Epcat would increase the compressive strength of mortars substantially, but increase the compressive strength of the related pastes only slightly. Compared to the the control motor cure at 3-28 days, mixes with 5-15% Epcat increase the compressive strength by amounts ranging from 13 to 41 %. In contrast, pastes with 5-15% Epcat only increase 1.4 to 14.3% in strengths over the plain paste at 3-28 days.
    As the W/B ratio decreases or the catalyst content increases, the strength enhancement effect becomes more significant. The improvement in the mechanical properties of mortars is not only due to the increase in the hydrated cement paste itself, but also due to improved bonds between the cement paste and aggregate.
    On the other hand, the pozzolanic property of Epcat was studied by using differential scanning calorimeter (DSC). Experimentally, cement pastes (water/binder ratio=0.3) incorporated with 0 ~ 30 wt% Epcat were prepared and cured for 1 ~ 28 days before DSC measurements. The cement hydrated products such as calcium hydroxide, C-S-H gel, and ettringite, were identified from the DSC diagrams of cement pastes. The results show that cement pastes with Epcat present produce more C-S-H and less CH than those without, indicating that the catalyst does accelerate the cement hydration by initiating the pozzolanic reaction with CH. Besides, the effect becomes more prominent when more Epcat was added in cement pastes or the curing time is longer.
    Finally, we replace part of silica fume by Epcat in the composition of reactive powder concrete (RPC). When the replacement of silica fume is up to 67%, the compressive strength of the resulting RPC cured at 3, 7 and 28 days are 72, 100 and 115 MPa, respectively. These strength values are 14~30% higher than that of the control. The increase on the compressive strength is due to higher pozzolanic reactivity of Epcat relative to silica fume.

    摘要…………………………………………………………...........I Abstract…………………………………………………….........III 目錄…………………………………………………………...........V 表目錄…………………………………………...………….........IX 圖目錄…………………………………………………….............X 簡字符號表……………………………………………............XIII 第一章 序論 1-1 研究背景及動機…………………………………………..……….1 1-2 研究方法………………………………………………….………..1 第二章 文獻回顧 2-1 水泥………………………………………………………..……...2 2-1-1 波特蘭水泥…………………………………...………….…...2 2-1-2 水泥水化反應…………………………..…………...……..…3 2-1-3 水泥水化週期 …………………………………………………..6 2-2 強塑劑(superplasticizer) …………………………………...8 2-2-1 化學摻料……………………………………………………....8 2-2-2 強塑劑添加之目的………………………………………………10 2-3 波索蘭材料之添加對水泥水化的影響………………….……..11 2-3-1 波索蘭材料…………………………………………..………..11 2-3-2 添加波索蘭材料之優點………………………………….....13 2-3-3 波索蘭反應………………………………………..………...13 2-4 石油廢觸媒Epcat …………………………………….……….14 2-4-1 沸石………………………………………………..………...14 2-4-2 沸石觸媒在煉油上之應用 …………………………………...15 2-4-3 廢觸媒之形成………..……………………….……………...16 2-4-4 廢觸媒之再生……………………………………………………18 2-4-5 廢觸媒作為波索蘭材料 ……………………….…………....19 2-5 熱示差掃瞄儀(DSC) …………………………………………...20 2-5-1 儀器原理 …………………………………………...……....20 2-5-2 DSC在水泥研究上之應用……………………………….…....21 2-6 活性粉混凝土(RPC) ……………………………………………..23 2-6-1 RPC之配比…………………………………………….…....…23 2-6-2 RPC之特性.…..………………………………………..……..24 2-6-3 RPC之本土化………………………………………….……....24 第三章 實驗計畫與研究方法 3-1 實驗流程…………………………………………….…….….….26 3-2實驗材料…………………………………………….………...….26 3-2-1 水泥……………………………………………………..…....26 3-2-2 砂 ……………………………………………..…….……....26 3-2-3 廢觸媒(Epcat) ………………………………….……..…….27 3-2-4 矽灰……………………………………………...…….……..27 3-2-5 石英粉……………………………………….….……..……..27 3-2-6 強塑劑……………………………………….………...……..27 3-2-8 鋼纖…………………………………………..……..………..27 3-3 試驗儀器與設備………………………………..………………..27 3-4 實驗之變數………………………………….…….……….…….28 3-5 實驗方法…………………………………………..……………..29 3-5-1 粒徑分析………………………………….……..……….…..29 3-5-2 比表面積分析…………………………….…………….…....29 3-5-3 X-光繞射分析(XRD) …….….…………….……….………..29 3-5-4 掃瞄式電子顯微鏡(SEM)之觀測 ………………..………....30 3-5-5 熱示差掃瞄(DSC)分析 …………………………..………....30 3-5-6 凝結時間試驗 …………………………………….………....30 3-6 水泥漿、砂漿之拌和、灌製、養護及測試………….……… .31 3-6-1 一般試體之拌和流程 ………………….………….……....31 3-6-2 RPC試體之拌和流程…………………………….….….… ..31 3-6-3 Flow table測試流程…………………………………….…….32 3-6-4 試體灌模流程 …………………………..………………....32 3-6-5 養護流程…………………………………..……....……….32 3-6-6 抗壓強度測試、試體之採………………………………....32 第四章 結果與討論 4-1材料基本性質分析…………………………………..………….33 4-1-1 水泥………………………………………………………….....33 4-1-2 Epcat ………………………………….…………………...35 4-1-4 石英砂……………………………….…………………….....39 4-1-5 石英粉………………………………….………………….....40 4-1-6 強塑劑MTP ………………………………..………………....42 4-2 Epcat對抗壓強度的影響……………………………………..….43 4-2-1 Epcat取代量對流度的影響………………………..………. .44 4-2-2 維卡針實驗 ……………………………………..…………...46 4-2-3 Epcat取代量對抗壓強度效應(W/B=0.3) …………………..48 4-2-4 Epcat取代量對抗壓強度效應(W/B=0.25) ………………….53 4-2-5 Epcat取代量對抗壓強度效應(W/B=0.2) …………………….54 4-2-6 水泥漿、砂漿相對強度比較………………………………...55 4-3 利用DSC探討Epcat之波索蘭活性…………….………….……..58 4-3-0 前言………………………………………….…………….....58 4-3-1 MTP對水泥水化的影響(無Epcat取代) ……………………….59 4-3-2 MTP對水泥水化的影響(10%Epcat取代) …………………...65 4-3-3 Epcat取代量對水泥水化的影響 …………………..………..70 4-4 Epcat在活性粉混凝土(RPC)之應用………………………….….75 4-4-1 RPC配比……………………………….……………………...75 4-4-2 RPC之抗壓強度…………………………………….………...75 第五章 結論…………………………………………………...…....77 第六章 參考文獻………………………………………………….....78 表目錄 表2.1 波特蘭水泥主要成分…………………………………………… 2 表2.2 波特蘭水泥之典型成份及其性質………………...………...3 表2.3 一般波特蘭水泥各成分水化反應之基本數據………………….6 表2.4 ASTM C494 之化學摻料規範…………………………...…… 9 表2.5 常見波索蘭材料之成分其應用……………………...…….…12 表2.6 典型RPC配比(重量比) …………………….…………………23 表2.7 RPC之本土化配比 …………………….……………..………25 表4.1 波特蘭水泥(Type1)基本性質表…………………………..….33 表4.2 石油廢觸媒Epcat基本性質表…………………………..…….35 表4.3 矽灰SF基本性質表…………………….………………..……37 表4.4 水泥漿及砂漿配比及抗壓強度表……………..…………….45 表4.5 RPC配比(重量比) …………………….……….……………75 圖目錄 圖2.1 靜電集塵器示意圖(俯視) …………………………..……….17 圖2.2 靜電集塵器示意圖(側視) ………………….………..…….17 圖2.3 熱流型DSC之樣品槽…………………….………………..….20 圖4.1 水泥之SEM圖…………………….……………………...……34 圖4.2 水泥之粒徑分析圖………….…….…….…………..……..34 圖4.3 水泥的XRD圖…………………….……………………..……35 圖4.4 Epcat之SEM 圖………………….…………………..……..36 圖4.5 Epcat之粒徑分析圖 ………………….………………..…...36 圖4.6 Epcat的XRD圖………………….…………………….…….37 圖4.7 矽灰的SEM圖…………………….……………….………….38 圖4.8 矽灰之粒徑分佈圖 …………………….……………………38 圖4.9 矽灰之XRD圖…………………….……………….………….39 圖4.10 石英砂之SEM圖…………………….…………..…………. 39 圖4.11 石英砂之粒徑分析圖…………………….………..………..40 圖4.12 石英粉之SEM圖……………………………………………….40 圖4.13 石英粉之粒徑分佈圖…………………….……….…………41 圖4.14 石英粉之XRD圖 …………………….………………..……41 圖4.15 MTP之IR圖 ……………………………………………………42 圖4.16 強塑劑SPR之IR圖譜……………………………...…………43 圖4.17 MTP添加量對於凝結時間的影響……………..….………47 圖4.18 Epcat取代量對水泥漿體終凝時間圖 ………………………48 圖4.19 Epcat取代量對抗壓強度的影響 (W/B=0.3) ……….………50 圖4.20 水泥漿與砂漿試體七天齡期之SEM圖(W/B=0.3)…………… 51 圖4.21 水泥漿、砂漿抗壓強度比較圖 (W/B=0.3)…………………52 圖4.22 Epcat取代量對抗壓強度的影響(W/B=0.25) ………………53 圖4.23 水泥漿、砂漿抗壓強度比較圖 (W/B=0.25) ………………54 圖4.24 Epcat取代量對抗壓強度的影響 (W/B=0.2) …………….…55 圖4.25 Epcat取代量對相對強度圖 (Mortar/Paste, W/B=0.3). .57 圖4.26 Epcat取代量對相對強度圖 (Mortar/Paste, W/B=0.25). 58 圖4.27 不同MTP添加量之水泥漿體(Epcat=0%)之DSC圖(一天齡期)61 圖 4.28 不同MTP添加量之水泥漿體(Epcat=0%)之DSC圖(三天齡期)…………………………………………………………….….…….62 圖4.29 不同MTP添加量之水泥漿體(Epcat=0%)之DSC圖(七天齡期) ……………………………………………………………….……62 圖4.30 不同MTP添加量之水泥漿體(Epcat=0%)之DSC圖(十四天齡期)…………………………………………………………….…….63 圖4.31 不同MTP添加量之水泥漿體(Epcat=0%)之DSC圖(二十八天齡期)………………………………………………………….…….….63 圖4.32 不同MTP添加量之水泥漿體(Epcat=0%)對CH熱含量變化圖…………………………………………………………………..... 65 圖4.33 不同MTP添加量之水泥漿體(Epcat=10%)之DSC圖(一天齡期) ………………………………………………………………….…...66 圖4.34 不同MTP添加量之水泥漿體(Epcat=10%)之DSC圖(三天齡期) ………………………………………………………………….…...67 圖4.35 不同MTP添加量之水泥漿體(Epcat=10%)之DSC圖(七天齡期) ………………………………………………………………….…...67 圖4.36 不同MTP添加量之水泥漿體(Epcat=10%)之DSC圖(十四天齡期) ……………………………………………………….…………..68 圖4.37 不同MTP添加量之水泥漿體(Epcat=10%)之DSC圖(二十八天齡期) …………………………………………………….……..…….68 圖4.38 不同MTP添加量之水泥漿體(Epcat=0%)之CH熱含量變化圖…………………………………………………………………...…70 圖4.39 不同Epcat取代量之水泥漿體之DSC圖(一天齡期)………….71 圖4.40 不同Epcat取代量之水泥漿體之DSC圖(三天齡期) …………71 圖4.41 不同Epcat取代量之水泥漿體之DSC圖(七天齡期)…………72 圖4.42 不同Epcat取代量之水泥漿體之DSC圖(十四天齡期) ………72 圖4.43 不同Epcat取代量之水泥漿體之DSC圖(二十八天齡期) ……73 圖4.44 不同Epcat取代量水泥漿體之CH熱含量圖 ………………74 圖4.45 RPC之抗壓強度(W/B=0.3) …………………………………75

    1.馮乃謙, 天然沸石混凝土應用技術, 中國鐵道出版社, 1996.
    2. 陳宗輝, 石油工業廢觸媒資源化之研究, 碩士論文, 國立雲林科技大學環境與安全工程系, 1999.
    3. N. Su, Z. H. Chen and H. Y. Fang,“Reuse of spent catalysts as fine aggregate in cement mortar”, Cem Concr Comp, 23, 2001, pp.111-118.
    4. 楊思廉, 工業化學概論, 高立, 台北, 1992, pp. 44-49.
    5. 黃兆龍, 混凝土材料品質概論, 廣昌, 1991.
    6. G. Jolicoeur and M. A. Simard, “Chemical Admixture-Cement Interactions:Phenomenology and Physico-chemical Concepts”, Cem Concr Comp, 20, 1998, pp. 87-101.
    7. 陳聖達, 化學摻料對混凝土性質的影響, 碩士論文, 國立台灣師範大學化學研究所, 1997.
    8. 王景信, 水泥之組成、性質及水化作用介紹, 工業簡訊, 經濟部工業局, 第二十二卷, 第六期, pp. 16-29,1992.
    9. 黃兆龍, 混凝土性質與行為, 詹氏, 1997.
    10. 黃忠信, 土木材料, 三民, 1998.
    11. 常正之, 混凝土施工, 三民, 1996.
    12. J. Buekett, “International Admixtures Standards”, Cem Concr Res, 20, 1998, pp. 137-140.
    13. 陳慶宏, 強塑劑於高性能混凝土中之效能評估, 碩士論文, 國立台灣師範大學, 2000.
    14. P. Richard and M. Cheyrezy, “Composition of Reactive Powder Concretes”, Cem Concr Res, 25, 1995, pp. 1501-1511.
    15. R. A. Helmuth, Fly Ash in Cement and Concrete, Portland Cement Association, 1987.
    16. 曾鋆生, 石油工業廢觸媒作為波索蘭材料之可行性研究, 碩士論文, 國立台灣師範大學, 2002.
    17. 李定粵, 觸媒的原理與應用, 正中, 1991.
    18. 胡興中, 觸媒原理與應用, 高立, 1998.
    19. 方義杉, 來自地心, 中油, 1996.
    20. http://www.eas.asu.edu/~holbert/wise/electrostaticprecip.html
    21. E. Furimsky,“Spent refinery catalysts: environment, safety and utilization”, Catalysis Today, 30, 1996, pp. 223-286.
    22. W. C. Hsu, “Utilization of the ceramic products made from wastes ”, Ceramic, 15, 1996, pp. 20-35.
    23. J. D. Lin, et al., “Utilization of Roc Spent Catalyst on Asphalt Concrete”, Proceedings of the International Conference on Industrial Waste Minimization ‘95”, 1995, pp. 667~674.
    24. 徐文慶等, 無機廢料之資源化利用, 工業污染防治, 59期, 1996, pp. 158~185.
    25. 方鴻源、蘇南、陳宗輝、施明倫, 石油工業廢觸媒資源化之研究,第十四屆廢棄物處理技術研討會論文集, 1999, pp. 74-80.
    26. F. Curcio, B. A. DeAngelis and S. Pagliolico, “Metakaolin as a pozzolanic microfiller for high-performance mortars, Cem Concr Res, 28, 1998, pp. 803-809.
    27. M. Oriol and J. Pera, “Pozzolanic activity of metakaolin under microwave treatment”, Cem Concr Res , 25, 1995, pp. 265-270.
    28. B. Pacewska, I. Wilinska and J. Kubissa, “Use of spent catalyst from catalytic cracking in fluidized bed as a new concrete additive”, Thermochimica Acta, 322, 1998, pp. 175-181.
    29. J. Paya, J. Monzo and M. V. Borrachero,“Physical, chemical and mechanical properties of fluid catalytic cracking reside (F3CR) cements”, Cem Concr Res, 31, 2001, pp. 57-61.
    30. 林敬二、林宗義譯, 儀器分析, 美亞, 1994.
    31. 石宇華, 儀器分析化學, 鼎茂, 1999.
    32. J. I. Bhatty, “A review of the application of thermal analysis to cement-admixture systems”, Thermochim Acta, 189, 1991, pp. 313-350.
    33. B. E. I. Abdelrazig, S. D. Main and D. V. Nowell, “Hydration studies of modified OPC pastes by differential scanning calorimetry and thermo-gravimetry”, J. Thermal Anal, 38, 1992, pp. 495-504.
    34. L. J. Parrott, M. Geiker, W. A. Gutteridge and D. Killoh, “Monitoring Portland cement hydration: Comparison of methods”, Cem Concr Res, 20, 1990, pp. 919-926.
    35. W. Nocun-Wczelik and J. Malolepszy, “Application of calorimetry in studies of the immobilization of heavy metals in cementitious materials”, Thermochim Acta, 269, 1995, pp. 613-619.
    36. W. Sha, E. A. O’Neill and Z. Guo, “Differential scanning calorimetry study of ordinary Portland cement”, Cem Concr Res, 29, 1999, pp. 1487-1489.
    37. J. ZelicÂ, D. RusÏic Â, D. VezÏa and R. KrstulovicÂ, “The role of silica fume in the kinetics and mechanisms during the early stage of cement hydration”, Cem Concr Res, 30, 2000, pp. 1655-1662.
    38. W. Sha and G. B. Pereira, “Differential scanning calorimetry study of hydrated ground granulated blast-furnace slag”, Cem Concr Res, 31, 2001, pp. 327-329.
    39. 廖基良, 活性粉混凝土配比本土化及微觀物理性質之研究, 碩士論文, 國立台灣大學, 1998.
    40. K. C. Hsu, Y. S. Tseng, F. F. Ku and N. Su,“Oil cracking waste catalyst as an active pozzolanic material for superplasticized mortars”, Cem Conc Res, 31, 2001, pp. 1815-1820.
    41. 黃兆龍、彭添富、林利國, 稻殼灰燃燒溫度對波索蘭反應性質之影響, 中國土木水利工程學刊, 第二卷, 1990.
    42. J. Paya, J. Monzo and M. V. Borrachero,“Fluid catalytic cracking reside (F3CR): An excellent mineral by-product for improving early-strength development of cement mixtures”, Cem Concr Res, 29, 1999, pp. 1773-1779.
    43. Z. Berhane, “The behaviour of concrete in hot climates”, Material and Structure, 25, 1992, pp. 157-163.
    44. P. C. Aitcin, High-Performance Concrete, E & FN SPON, New York, 1998.
    45. H. A. Toutanji and T. El-Korchi, “The influence of silica fume on the compressive strength of cement paste and mortar”, Cem Concr Res, 25 , 1995, pp. 1591-1602.
    46. X. Cong, S. Gong, D. Darwin and S. McCable, “Role of silica fume in compressive strength of cement paste, mortar, and concrete”, ACI Mater J, 89, 1992, pp. 375-387.
    47. 古凡峰, 石油工業廢觸媒對砂漿材料性質的影響, 碩士論文, 國立台灣師範大學, 2001.
    48. M. Oriol and J. Pera, “Pozzolanic activity of metakaolin under microwave treatment”, Cem Concr Res, 25, 1995, pp. 265-270.
    49. W. Sha, E. A. O’Neill and A. Guo, “Differential scanning calorimetry study of ordinary Portland cement”, Cem Concr Res, 29, 1999, pp. 1487-1489.

    無法下載圖示
    QR CODE