簡易檢索 / 詳目顯示

研究生: 范貞貞
Zenzen Fan
論文名稱: 阿達瑪進樣器的設計及其在氣相層析質譜法對揮發性有機物偵測上的應用
Design of a Novel Hadamard-Injector and Its Application to VOCs (Volatile Organic Compounds) Detection Based on Gas Chromatography/Mass Spectrometry
指導教授: 林震煌
Lin, Cheng-Huang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 93
中文關鍵詞: 阿達瑪轉換阿達瑪進樣器揮發性有機物氣相層析質譜法
英文關鍵詞: Hadamard, VOC, GC/MS
論文種類: 學術論文
相關次數: 點閱:146下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究設計並製造一個新型阿達瑪進樣器(Hadamard injector),能使待分析的揮發性有機物(volatile organic compounds, VOCs)依據阿達瑪序列(Hadamard code)注射到氣相層析質譜儀(gas chromatography/mass spectrometry)中。配合阿達瑪轉換(Hadamard transformation)技術,相較於傳統的單一注射方式,能更有效地提高訊號的雜訊比值(signal-to-noise ratio)。此阿達瑪進樣器本身構造類似脈衝噴嘴(pulse nozzle),可由電腦控制開放的時間與樣品進入氣相層析氣化管(inlet liner)的量。視實驗情況所需,氣態樣品的單一注射量可控制在30 nL ~ 3 mL之間。同日與異日的RSD(related standard deviation)值分別為0.24 ~ 0.38%及0.27%,顯示本進樣器具有極佳的再現性。本實驗亦詳細探討氣相層析分離時進樣時間、進樣量與分流比等因素對阿達瑪轉換效率的影響。在最佳化進樣條件下,當測試樣品以阿達瑪序列次數為255、511、1023次分別進行實驗時,雜訊比值可得到7.7、10.8、14.8倍的改良效果。這樣的增加倍率與理論值(8.0、11.3、16.0)相當吻合。最後,本研究也對真實樣品進行實際偵測。將10.0 L的實驗室內空氣,以抽氣採樣方式,經活性碳吸附後,加熱脫附之同時,以阿達瑪進樣器將空氣樣品注射到氣相層析氣化管中,實際分析化學實驗室內揮發性有機物。實驗結果發現,有阿達瑪進樣器之協助,空氣中即使含有低濃度的丙酮、二氯甲烷及己烷,亦能輕易地被檢驗出來。

    A novel Hadamard-injector was well designed and successfully used for the detection of VOCs (volatile organic compounds) based on gas chromatography/mass spectrometry (GC/MS). Compared to a single injection used in most of GC/MS, the inverse Hadamard transformation of the encoded chromatogram can make the signal-to-noise (S/N) ratios of signals improve substantially. Herein, the Hadamard-injector was modified from a regular pulse nozzle, where a personal computer was used to control the open timing and sample injection volume (into the GC inlet liner). Depending on the experiment conditions, the injected volume of gas sample can be controlled in the range of 30 nL ~ 3 mL. The RSD (related standard deviation) values of within-day and between-day were determined to 0.24 ~ 0.38% and 0.27%, respectively, indicating its stability and reproducibility. Furthermore, the sample injection time, volume and split-ratio were investigated in detail during GC separation experiments. Under the optimized conditions, when the Hadamard matrices of 255, 511 and 1023 were used, the S/N ratios of the signals were substantially improved to 7.7-, 10.8- and 14.8-fold, respectively, matched with those expected from theoretical values (8.0-, 11.3- and 16.0-fold). Finally, the Hadamadrd injector was also examined by a real sample. A 10.0 L air (in a chemistry laboratory) was sampled by means of an activated-charcoal trapper. After a period of time, the trapper was heated and the condensed sample was injected into the inlet liner by the Hadamadrd injector. The findings show that acetone, dichloromethane and hexane were easily determined from the air sample, even at low concentration levels.

    摘要 Abstract 目錄 圖目錄 表目錄 第一章 緒論 1-1 研究目的 1-2 揮發性有機物簡介 1-2-1 揮發性有機物的定義 1-2-2 揮發性有機物的汙染來源 1-2-3 揮發性有機物的危害 1-2-4 揮發性有機物的採樣與分析 1-2-5 揮發性有機物的控制與處理 1-3 活性碳吸附劑簡介 1-3-1 活性碳的製造 1-3-2 活性碳的種類 1-3-3 吸附原理 1-3-4 影響吸附的因素 1-3-5 活性碳吸附劑的再生 第二章 研究方法及原理 2-1 阿達瑪矩陣原理 2-1-1 矩陣起源 2-1-2 阿達瑪轉換法 2-1-3 LabVIEW操作程式 2-1-4 阿達瑪轉換提高S/N比的理論值 2-2 阿達瑪轉換法在各方面的應用 2-2-1 在分析化學上的應用 2-2-2 在其他方面的應用 第三章 實驗儀器和藥品 3-1 實驗儀器 3-1-1 氣相層析質譜法 3-1-2 氣相層析儀 3-1-3 介面 3-1-4 質譜儀 3-1-5 資料處理 3-1-6 質譜儀校正 3-1-7 儀器及週邊設備列表 3-2 實驗藥品與物理性質 第四章 研究過程與結果討論 4-1 阿達瑪進樣系統 4-1-1 阿達瑪進樣器 4-1-2 標準品進樣 4-1-3 活性碳吸附/脫附進樣 4-1-4 真實樣品進樣 4-1-5 系統清潔方法 4-2 進樣控制與數據紀錄之時間校正 4-3 阿達瑪進樣條件最佳化 4-3-1 進樣針頭長度對進樣量的影響 4-3-2 進樣體積的測量 4-3-3 分流的影響 4-3-4 阿達瑪進樣轉換結果與理論值比較 4-3-5 進樣器穩定度與阿達瑪轉換再現性 4-4 混合物阿達瑪進樣 4-4-1 分析物特定離子荷質比 4-4-2 分離條件 4-4-3 阿達瑪轉換與單點進樣結果比較 4-5 真實樣品應用 第五章 結論 參考文獻

    [1]Radian Corp., “Control techniques for volatile organic emissions from stationary source” USEPA, EPA-450/2-78-022, 1978.
    [2]行政院環境保護署,“揮發性有機物空氣污染管制及排放標準”,1997。
    [3]A publication of the AIR NOW homepage of the USEPA: http://www.epa.gov/airnow/health/smog.pdf EPA-452/K-99-001 July, 1999.
    [4]Atkinson, R. “Gas- phase tropospheric chemistry of organic compounds: a review” Atmos. Environ. 1990, 24A, 1.
    [5]Lahre, T. “Cancer Risks form air toxic in urban areas” 81st Annual Meeting of APCA, Dallas, Texas, June, 19-24, 1998.
    [6]Levaggi, D. A.; Sia, W. “Gaseous toxics monitoring in the San Francisco Bay Area: a Revies and Assessment of Four years of Data” 84th Annual Meeting of A&WMA, Vancouver, B. C., Columbia, 1991.
    [7]De, L. F. “Trends in ground level ozone concentrations in the European Union” Environmental Science & Policy 2000, 3, 189.
    [8]鍾崇燊、徐心仁,“大氣層中的臭氧與氟氯碳化物”,科學發展,第359期,2002。
    [9]蘇源昌,“內部標準物在氣相層析質譜儀分析揮發性有機物的效能探討”,中央大學化學研究所碩士論文,2006。
    [10]Molina, M.J., F. S. Rowland “Stratospheric Sink for Chlorofluoreomethane: Chlorine atom Catalyzed Destruction of Ozone” Nature. 1974, 249, 810.
    [11]Chameides, W. L., Fehsenfeld F., Rodgers, M. O., Cardelino, Martinez,C. J. Parrish, D. W., Lonneman, D. R., Lawson, R. A. Rasmussen, Zimmerman, P., Greenberg J., Middleton, Wang, P. T., “Ozone precursor relationships in the ambient air” J. Geophy. Res. 1992, 28. 6037.
    [12]Bowman, F. M., Seinfeld J. H. “Ozone productivity of atmospheric organics” J. Geophy. Res. 1994, 99, 5309.
    [13]W. P. L. Carter “A detailed mechanism for the gas-phase atmospheric reactions of organic compounds” Atmos. Environ. 1996, 24A, 481.
    [14]吳東明,“中孔徑矽分子篩與微孔徑碳分子篩使用於VOC線上濃縮之吸附性比較”,中央大學化學研究所碩士論文,2005。
    [15]劉信旺、吳倍任、羅俊光,“空氣中揮發性有機化合物分析方法”,化學,第62卷,第3期,2004。
    [16]T. Laurila, H. Hakola “Seasonal cycle of C2-C5 hydrocarbons over the Baltic Sea and northern Finland” Atmos. Environ. 1996, 30, 1597.
    [17]T.F. Dann, D.K. Wang “Ambient air benzene concentrations in Canada (1989-1993) seasonal and day of week variations, trends and source influences” J. Air Waste Manage. Assoc. 1995, 45, 695.
    [18]W.-H. Ding, J.-L. Wang “Spatial concentration profiles of C2-C6 hydrocarbons in the atmosphere of Taipei metropolitan area” Chemosphere. 1998, 37, 1187.
    [19]Dewulf, J.; Van, H.; Langenhove “Chlorinated C1 hydrocarbons and C2 hydrocarbons and monocyclic aromatic-hydrocarbons in marine waters- An overview on fate processes, sampling, analysis and measurements” Water Res. 1997, 31, 1825.
    [20]洪文雅,“揮發性有機廢氣處理技術簡介”,環保產業雙月刊,第21期,2003。
    [21]蔡文田,“含揮發性有機物(VOC)廢氣之吸附處理技術”,化工技術,第3卷,第6期,1995。
    [22]黃秀株,“以體積測定法研究VOCs之吸附平衡並與重量測定法必較”,中原大學化學工程學系碩士論文,2006。
    [23]Lewis, I. C. “Chemistry of Carbonization” Carbon 1982, 20, 519-529.
    [24]Rodríguez-Reinoso, F.; Molina-Sabio, M.; Gonzalez, M. T. “Use of Steam and CO2 as Activating Agents in the Preparation of Activated Carbons” Carbon 1995, 33, 15.
    [25]Wigmans, T. “Industrial Aspects of Production and Use of Activated Carbons” Carbon 1989, 27, 13.
    [26]賴俊吉、席行正、陳勝一,“廢麥粕合成奈米孔徑吸附劑之技術開發與應用”,行政院環境保護署九十四年度環保科技育成中心計畫期末報告,2005。
    [27]陳威錦,“熱重分析法探討球狀活性碳吸附氣相氯化汞之吸附動力研究”,中山大學環境工程研究所碩士論文,2004。
    [28]財團法人台灣產業服務基金會,活性碳吸附劑之選擇與吸附塔,http://www.ftis.org.tw/eta/train/PDF/H10624-02.pdf
    [29]陳心傑,財團法人紡織產業綜合研究所產品開發及推廣部,有機氣體吸附過濾評估研究。
    [30]Helmig, D.; Greenberg, J. P. “Automated in-situ gas chromatographic-mass spectrometric analysis of ppt level volatile organic trace gases using multistage solid-adsorbent trapping” J. Chromatogr. A 1994, 677, 123.
    [31]Smith, J. M.; Van-Ness, H. C.; Abbott, M. M., ed. “Introduction to Chemical Engineering Thermodynamics” McGrawHill, New York, 1996.
    [32]經濟部工業局,產業綠色技術輔導與推廣計畫,綠色技術資訊平台-廢棄VOC控制技術,http://www.ftis.org.tw/eta/tech_platform/item2a_PDF/Tair003.pdf
    [33]Sheintuch, Moshe; Matatov-Meytal, Yurii I. “Comparison of catalytic processes with other regeneration methods of activated carbon” Catalysis Today, 1999, 53, 73.
    [34]Sylvester, J. J. Philosophical Magazine. 1867, 34, 461.
    [35]Hadamard, J. Bulletin des Sciences Mathemaiques. 1893, 17, 240.
    [36]林參天、薛昭雄,“Hadamard矩陣及其應用”,數學傳播,第18卷,第4期,1994。
    [37]Gottlieb, P. IEEE Trans. Info. Theory, 1968, IT-14, 428.
    [38]Harwit, M. D.; Sloane, N. J. “Hadamard Transform Optics” Academic Press: London, 1979
    [39]Griffiths, P. R., ed. “Transform Techniques in Chemistry. Modern Analytical Chemistry Series” Plenum Press: New York, 1978.
    [40]Literature Seminar, Pan, C. “Applications of The Hadamard Transform in Analytical Chemistry” 2007, 3rd, pp. 3.
    [41]Yates, F. J. Roy. Stat. Soc. Supp. 1935, 2, 181.
    [42]Fellgett, P. J. de Physique et le Radium. 1958, 19, 187.
    [43]Hotelling, H. Ann. Math. Stat. 1944, 15, 297.
    [44]Zupan, J.; Bohanec, S.; Razinger, M.; Novic, M. Analytical Chimica Acta. 1988, 210, 63.
    [45]Smit, H. C. Chromatographia 1970, 3, 515.
    [46]Brock, A.; Rodriguez, N.; Zare, R. N. Anal. Chem. 1998, 70, 3735.
    [47]Trapp, O.; Kimmel, J. R.; Yoon, O. K.; Zuleta, I. A.; Feranadez, F. M.; Zare, R. N. Angew. Chem. Int. Ed. 2004, 43, 6541.
    [48]Fernández, F. M.; Vadillo, J. M.; Kimmel, J. R.; Wetterhall, M.; Markides, K.; Rodriguez, N.; Zare, R. N. Anal. Chem. 2002, 74, 1611.
    [49]Treado, P. J.; Govil, A.; Morris, M. D.; Sternitzke, K. D.; McCreery, R. L. Soc. Appl. Spetrosc. 1990, 44, 1270.
    [50]DeVerse, R. A.; Hammaker, R. M.; Fateley, W. G. J. Mol. Struct. 2000, 521, 77.
    [51]Chen, G.; Mei, E.; Gu, W.; Zeng, X.; Zeng, Y. Anal. Chim. Acta. 1995, 300, 261.
    [52]Mei, E.; Chen, G.; Zeng, Y. Microchem. J. 1996, 53, 316.
    [53]Tang, H.; Chen, G.; Zhou, J.; Wu, Q. Anal. Chim. Acta. 2002, 468, 27.
    [54]Clowers, B. H.; Siems, W. F.; Hill, H. H.; Massick, S. M. Anal. Chem. 2006, 78, 44.
    [55]Szumlas, A.W.; Ray, S. J.; Hieftje, G. M. Anal. Chem. 2006, 78, 4474.
    [56]Fletcher, D. W.; Haselgrove, J. C.; Bolinger, H. Magn. Reson. Imaging 1999, 17, 1457.
    [57]Kupce, E.; Freeman, R. J. Mag. Reson. 2003, 163, 56.
    [58]Kaneta, T.; Yamaguchi, Y.; Imasaka, T. Anal. Chem. 1999, 71, 5444.
    [59]Kaneta, T. Anal. Chem. 2001, 73, 540A.
    [60]Hata, K.; Kichise, Y.; Kaneta, T.; Imasaka, T. Anal. Chem. 2003, 75, 1765.
    [61]Hata, K.; Kaneta, T.; Imasaka, T. Anal. Chem. 2004, 76, 4421.
    [62]Braun, K. L.; Hapuarachchi, S.; Ferrnandez, F. M.; Aspinwall, C. A. Anal. Chem. 2006, 78, 1628.
    [63]Zhang, T; Fang, Q; Fang, Z.-L. Chem. J. Chinese Universities 2003, 10, 1775.
    [64]Annino, R.; Gonnord, M.-F.; Guichon, G. Anal. Chem. 1979, 51, 379.
    [65]Phillips, J. B. Anal. Chem. 1980, 52, 468A.
    [66]Kaljurand, M.; Kūllik, E. J. Chromatogr. 1979, 171, 243.
    [67]Villalanti, D. C.; Burke, M. F.; Phillips, J. B. Anal. Chem. 1979, 51, 2222.
    [68]Kaljurand, T.; Smit, H. C. Chemometr. Intell. Lab. 2005, 79, 65.
    [69]Lin, C-H.; Kaneta, T.; Chen, H-M.; Chang, H-W. Liu, J-T. Anal. Chem. 2008, 80, 5755.
    [70]Karasek, F. W., Clemant, R. E. Elseire science publishing company Inc., 1988.
    [71]Richardson, E. G., ed. “H.264 and MPEG-4 Video Compression: Video Coding for Next-generation Multimedia” Chichester: John Wiley & Sons Ltd., 2003.
    [72]黃世光、王丕承,“超飽和設計的研究”,中央大學統計研究所碩士論文,2000。
    [73]Skoog, ed. “Principles of Instrumental Analysis” 5th ed. pp. 704.
    [74]Karasek, F. W., Clemant, R. E. Elseire science publishing company Inc., 1988.
    [75]Skoog; Holler; Niema, ed “Principles of Instrumental Analysis” 5th ed. Pp 713.
    [76]Message, G. M., ed “Quardrupole Storage Mass spectrometry” New York, Wiley, 1989.
    [77]Skoog, ed. “Principles of Instrumental Analysis” 5th ed. pp. 503.
    [78]Message, G. M., ed. “Partical aspects of chromatography/mass spectrometry” chapter 5, 1984.
    [79]Watson, J. T., ed. “Introduction to mass spectrometry” pp. 247.
    [80]行政院環保署,空氣中揮發性有機化合物檢測方法-不鏽鋼採樣筒/氣相層析質譜儀法,NIEA A715.13B。
    [81]EPA Air Analysis Method TO-15.
    [82]張寶、劉志慶、王新平,“活性碳對乙酸乙酯的吸附和再生”,應用化學,第26卷,第3期,2009。

    無法下載圖示 本全文未授權公開
    QR CODE