研究生: |
虞富崴 Yu, Fu-Wei |
---|---|
論文名稱: |
探究學生在幾何任務中展現之數學創造力與視覺推理歷程及其間之關聯 Exploring the Mathematical Creativity, Visual Reasoning Process and its Relationship of Students in Geometrical Task |
指導教授: |
左台益
Tso, Tai-Yih |
口試委員: |
左台益
Tso, Tai-Yih 李源順 Lee, Yuan-Shun 呂鳳琳 Lu, Feng-Lin |
口試日期: | 2023/07/24 |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 218 |
中文關鍵詞: | 數學創造力 、視覺推理 、視覺化 、多元解題任務 、資優教育 |
研究方法: | 個案研究法 |
DOI URL: | http://doi.org/10.6345/NTNU202300892 |
論文種類: | 學術論文 |
相關次數: | 點閱:117 下載:40 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討學生在面對幾何任務時,所展現出的數學創造力以及視覺推理歷程的關聯性,以及其數學創造力產品。為回應研究問題,本研究採取質性研究法之個案研究法,個案人數總計八位,並依照「學習階段」與「資優身分」兩個變項分為四組,並以幾何多元解題任務以及半結構式訪談大綱作為主要的研究工具。對於解題歷程的分析則參考並修改Schoenfeld(1985)的原案分析方法,而在視覺推理歷程與數學創造力產品的分析,則分別採用Zazkis等人(1996)所提出之視覺化-分析模型以及Leikin(2009)的數學創造力評分架構。
本研究的主要研究結果顯示:(1) 解法與個體的創造性分數之決定性因素為獨創力;(2) 無論學習階段或是資優身分,皆有機會提出高創造力的解法;(3) 同一問題的不同解法下,有多元的視覺推理歷程;(4) 高創造力的解法較仰賴直觀與視覺行動;(5) 學習階段在分析行動的選擇受到知識豐富程度的限制,且高創造力解法在解題的先後順序具有差異;(6) 資優生多具備靈活思考的能力,但較缺乏對某一解法的深究;(7) 課程調整會影響資優生數學創造力的發展。
研究最後對於教學實務與未來研究給予數點建議,並藉由對於創造力與視覺推理的研究,期許在數學教育與資優教育之間建立起連結。
中文文獻
身心障礙及資賦優異學生鑑定辦法(2013年9月2日)修正公布。https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=H0080065
李健恆(2019)。高一學生視覺化轉化為幾何推理之過程及其特徵(系統編號:107NTNU5479025)[博士論文,國立臺灣師範大學]。臺灣碩博士論文知識加值系統。
高宜楓(2014)。國中數理資優生解題表現之研究(系統編號:102NTNU5479012)[碩士論文,國立臺灣師範大學]。臺灣碩博士論文知識加值系統。
特殊教育法(2023年6月21日)修正公布。https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=H0080027
國立臺灣師範大學臺灣PISA國家研究中心(年份不詳)。PISA 2022創意思考評量架構。https://pisa.irels.ntnu.edu.tw/files/PISA2022創意思考評量架構.pdf
教育部(2003)。創造力教育白皮書:打造創造力國度。https://talented.special.tyc.edu.tw/userfiles/talented.special.tyc.edu.tw/files/20210331034650577.pdf
教育部(2021)。十二年國民基本教育課程綱要總綱。https://www.naer.edu.tw/upload/1/16/doc/288/(111學年度實施)十二年國教課程綱要總綱.pdf
教育部(2023)。一一一年度特殊教育統計年報。https://www.set.edu.tw/actclass/fileshare/default.asp
郭政良(2015)。國中數理資優生在排列組合單元的解題歷程分析(系統編號:103NTNU5479001)[碩士論文,國立臺灣師範大學]。臺灣碩博士論文知識加值系統。
喻威翔(2022)。初探多元解題教學情境下高中生的數學創造力與創造歷程(系統編號:110NTNU5231011)[碩士論文,國立臺灣師範大學]。臺灣碩博士論文知識加值系統。
劉宣谷(2015)。數學創造力的文獻回顧與探究。臺灣數學教育期刊,2(1),23-40。
潘淑滿(2003)。質性研究:理論與應用。心理。
盧台華(1986)。如何應用旋轉門模式於資源教室方案中。資優教育季刊,18,32-35。
外文文獻
Amabile, T. M. (1983). The social psychology of creativity: A componential conceptualization. Journal of Personality and Social Psychology, 45, 357-376. https://doi.org/10.1037/0022-3514.45.2.357
Amabile, T. M. (1997). Motivating creativity in organizations: On doing what you love and loving what you do. California Management Review, 40(1), 39-58.
Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 52(3), 215-241.
Arnheim, R. (1976). Visual thinking. University of California Press.
Bloom, B. S. (1985). Development talent in young people. Ballantine.
Clements, K. (1981). Visual imagery and school mathematics. For the learning of mathematics, 2(2), 2-9.
Clements, K. (1982). Visual imagery and school mathematics. For the learning of mathematics, 2(3), 33-39.
Clements, M. A. (1984). Terence Tao. Educational studies in Mathematics, 15(3), 213-238. https://doi.org/10.1007/BF00312075
Cropley, A. (2006). Functional creativity: A socially-useful creativity concept. Baltic Journal of Psychology, 7(1), 26-38.
Cruz, I., Febles, M., & Diaz, J. (2000). Kevin: A visualiser pupil. For the Learning of Mathematics, 20(2), 30-36. http://www.jstor.org/stable/40248324
Csikszentmihalyi, M. (1996). Creativity: Flow and the psychology of discovery and invention. HarperCollins.
Csikszentmihalyi, M. (2000). Implications of a systems perspective for the study of creativity. In R. J. Sternberg (Ed.), Handbook of creativity (pp. 313-338). Cambridge University Press.
Czarnocha, B. (2014). On the culture of creativity in mathematics education. Teaching Innovations, 27(3), 31-45.
Czarnocha, B., & Baker, W. (2015, June 25-28). Creativity and bisociation [Oral Presentation]. The 9th MATHEMATICAL CREATIVITY AND GIFTEDNESS International Conference, Sinaia, Romania. https://mcg.edusigma.ro/pdfuri/MCG-9-Conference-proceedings.pdf
De Morgan, A. (1866). Sir W. R. Hamilton. Gentleman’s Magazine and Historical Review, 1, 128-134.
Dreyfus, T. (1991, June 29-July 4). On the status of visual reasoning in mathematics and mathematics education. In Proceedings of the 15th PME International Conference (Vol. 1, pp. 33-48). Assissi, Italy.
Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. Tall (Ed.). Advanced mathematical thinking (pp. 95-126). Kluwer Acadamic Publishers.
Duval, R. (1995). Geometrical pictures: Kinds of representation and specific processings. In R. Sutherland & J. Mason (Eds.), Exploiting mental imagery with computers in mathematics education (pp. 142-157). Springer.
Duval, R. (1998). Geometry from a cognitive point of view. In C. Mammana & V. Villani (Eds.), Perspectives on the Teaching of Geometry for the 21st Century (pp. 37-52). Kluwer Academic Publishers.
Ervynck, G. (1991). Mathematical creativity. In Advanced mathematical thinking (pp. 42-53). Kluwer Acadamic Publishers.
Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics, 24(2), 139-162.
Freiman, V. (2009). Mathematical enrichment: Problem-of-the-week model. In R. Leikin, A. Berman, & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students (pp. 367-381). Brill.
Gagatsis, A., Elia, I., Geitona, Z., Deliyianni, E., & Gridos, P. (2022). How could the Presentation of a Geometrical Task Influence Student Creativity?. Journal of Research in Science Mathematics and Technology Education, 5(1), 93-116.
Gridos, P., Avgerinos, E., Mamona-Downs, J., & Vlachou, R. (2021). Geometrical figure apprehension, construction of auxiliary lines, and multiple solutions in problem solving: Aspects of mathematical creativity in school geometry. International Journal of Science and Mathematics Education, 20, 619-636. https://doi.org/10.1007/s10763-021-10155-4
Guilford, J. P. (1950). Creativity. American Psychologist, 5(9), 444-454. https://doi.org/10.1037/h0063487
Guilford, J. P. (1967). The nature of human intelligence. McGraw-Hill.
Hadamard, J. W. (1945). Essay on the psychology of invention in the mathematical field. Princeton University Press.
Haylock, D. W. (1987). A framework for assessing mathematical creativity in school children. Educational Studies in Mathematics, 18(1), 59-74. https://doi.org/10.1007/BF00367914
Herbst, P. (2002). Establishing a custom of proving in American school geometry: Evolution of the two-column proof in the early twentieth century. Educational Studies in Mathematics, 49(3), 283-312.
Isaksen, S. G., Murdock, M. C., Firestien, R. L., & Treffinger, D. J. (1993). Understanding and recognizing creativity: The emergence of a discipline. Ablex.
Johnson, H., & Carruthers, L. (2006). Supporting creative and reflective processes. International Journal of Human-Computer Studies, 64(10), 998-1030.
Kattou, M., Christou, C., & Pitta-Pantazi, D. (2015, February). Mathematical creativity or general creativity? In K. Krainer & N. Vondrová (Eds.), Proceedings of the Ninth Conference of the European Society for Research in Mathematics Education (pp. 1016-1023). Prague, Czech Republic.
Kaufman, J. C., & Beghetto, R. A. (2009). Beyond big and little: The four c model of creativity. Review of general psychology, 13(1), 1-12.
Kaufman, J. C., Plucker, J. A., & Russell, C. M. (2012). Identifying and assessing creativity as a component of giftedness. Journal of Psychoeducational Assessment, 30(1), 60-73. https://doi.org/10.1177/0734282911428196
Koestler, A. (1964). The Act of Creation. Penguin Books.
Krutetskii, V. A. (1976). The Psychology of Mathematical Abilities in Schoolchildren. University of Chicago Press.
Leikin, R. (2007, February). Habits of mind associated with advanced mathematical thinking and solution spaces of mathematical tasks. In the Proceedings of the Fifth Conference of the European Society for Research in Mathematics Education – CRÈME-5 (pp. 2330-2339). Larnaca, Cyprus.
Leikin, R. (2009). Exploring mathematical creativity using multiple solution tasks. In R. Leikin, A. Berman, & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students (pp. 129-145). Sense Publishers.
Leikin, R. (2020). Giftedness and high ability in mathematics. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 247-251). Springer International Publishing.
Leikin, R., & Lev, M. (2007, July). Multiple solution tasks as a magnifying glass for observation of mathematical creativity. In J. H. Woo, H. C. Lew, K. S. Park, & D. Y. Seo (Eds.), Proceedings of the 31st International Conference for the Psychology of Mathematics Education (Vol. 3, pp. 161-168). Seoul, Korea: The Korea Society of Educational Studies in Mathematics.
Leikin, R., & Lev, M. (2013). Mathematical creativity in generally gifted and mathematically excelling adolescents: What makes the difference?. ZDM—The International Journal on Mathematics Education, 45(2), 183-197. https://doi.org/10.1007/s11858-012-0460-8
Lester, F. K. (1985). Methodological considerations in research on mathematical problem solving. In E. A. Silver (Ed.), Teaching and learning mathematical problem solving: Multiple research perspectives (pp. 41-69). Lawrence Erlbaum and Associates.
Lev, M., & Leikin, R. (2017). The interplay between excellence in school mathematics and general giftedness: Focusing on mathematical creativity. In R. Leikin, B. Sriraman (Eds.), Creativity and giftedness: Interdisciplinary perspectives from mathematics and beyond (pp. 225-238). Springer.
Levav-Waynberg, A., & Leikin, R. (2012). The role of multiple solution tasks in developing knowledge and creativity in geometry. Journal of Mathematics Behavior, 31(1), 73-90.
Liljedahl, P. (2013). Illumination: an affective experience?. ZDM—The International Journal on Mathematics Education, 45(2), 253-265. https://doi.org/10.1007/s11858-012-0473-3
Lowrie, T. (2000). A case of an individual’s reluctance to visualize. Focus on Problems in Mathematics, 22, 17-26.
Mann, E. L. (2006). Creativity: The essence of mathematics. Journal for the Education of the Gifted, 30(2), 236-260.
Mann, E. L. (2009). The search for mathematical creativity: Identifying creative potential in middle school students. Creativity Research Journal, 21(4), 338-348. https://doi.org/10.1080/10400410903297402
Mann, E., Chamberlin, S. A., & Graefe, A. K. (2017). The prominence of affect in creativity: Expanding the conception of creativity in mathematical problem solving. In R. Leikin & B. Sriraman (Eds.), Creativity and giftedness: Interdisciplinary perspectives from mathematics and beyond (pp. 57-76). Springer.
Milgram, R. M., & Hong, E. (2009). Talent loss in mathematics: Causes and solutions. In R. Leikin, A. Berman, & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students (pp. 149-163). Brill.
National Council of Teachers of Mathematics. (2000) Principles and standards for school mathematics.
Organisation for Economic Co-operation and Development. (2019, April). PISA 2021 Creative Thinking Framework (Third Draft). https://www.oecd.org/pisa/publications/PISA-2021-creative-thinking-framework.pdf
Padilla, V. (1990). Les figures aident-elles à voir en géométrie? [圖形有助於幾何理解嗎?]. Annales de Didactique et de Sciences Cognitives, 3, 223-252.
Phillips, L. M., Norris, S. P., Macnab, J. S. (2010). Visualization in mathematics, reading and science education. Springer.
Pitta-Pantazi, D., Kattou, M., & Christou, C. (2018). Mathematical creativity: Product, person, process and press. In F. M. Singer (Ed.), Mathematical Creativity and Mathematical Giftedness: Enhancing Creative Capacities in Mathematically Promising Students (pp. 27-53). Springer.
Poincaré, H. (1948). Science and method. Dover.
Pólya, G. (1954). Mathematics and plausible reasoning: Induction and analogy in mathematics (Vol. II). Princeton University Press.
Pólya, G. (1957). How to solve it (2nd edition). Princeton University Press.
Pólya, G. (1981). Mathematical discovery: On understanding, learning and teaching problem solving. Wiley.
Presmeg, N. C. (1992). Prototypes, metaphors, metonymies and imaginative rationality in high school mathematics. Educational studies in mathematics, 23(6), 595-610.
Presmeg, N. C. (2003). Creativity, mathematizing and didactizing: Leen Streefland’s work continues. Educational Studies in Mathematics, 54(1), 127-137. https://doi.org/10.1023/B:EDUC.0000005255.04769.89
Renzulli, J. S. (1978). What makes giftedness? Reexamining a definition. Phi Delta Kappan, 60(3), 180-184.
Renzulli, J. S., & Reis, S. M. (1985). The schoolwide enrichment model: A comprehensive plan for educational excellence. Creative Learning Press.
Renzulli, J. S. (1986). The three-ring conception of giftedness: A developmental model for creative productivity. In R. J. Sternberg, & J. E. Davidson (Eds.), Conceptions of giftedness (pp. 53-92). Cambridge University Press.
Rhodes, M. (1961). An analysis of creativity. Phi Delta Kappan, 42(7), 305-311.
Schindler, M., Lilienthal, A. (2017). Eye-Tracking As A Tool For Investigating Mathematical Creativity. In The 10th Mathematical Creativity and Giftedness International Conference: Proceedings (pp. 45-50). Nicosia, Cyprus.
Schoenfeld, A. (1985). Mathematical problem solving. Academic Press.
Senk, S. L. (1985). How well do students write geometry proofs?. The mathematics teacher, 78(6), 448-456.
Sheffield, L. (2009). Developing mathematical creativity-questions may be the answer. In R. Leikin, A. Berman, & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students. Sense Publishers.
Silver, E. A. (1997). Fostering creativity through instruction rich in mathematical problem solving and problem posing. ZDM—The International Journal on Mathematics Education, 29(3), 75-80. https://doi.org/10.1007/s11858-997-0003-x
Singer, F. M. (2012). Exploring mathematical thinking and mathematical creativity through problem posing. Exploring and advancing mathematical abilities in high achievers, 119-124.
Skemp, R. R. (1971). The psychology of learning mathematics. Penguin Books.
Sriraman, B. (2004). The characteristics of mathematical creativity. The Mathematics Educator, 14(1), 19-34.
Sriraman, B. (2005). Are giftedness and creativity synonyms in mathematics?. Journal of Secondary Gifted Education, 17(1), 20-36.
Sriraman, B., Yaftian, N., & Lee, K. H. (2011). Mathematical creativity and mathematics education: A derivative of existing research. In B. Sriraman, & K. H. Lee (Eds.), The elements of creativity and giftedness in mathematics (pp. 119-130). Brill.
Sternberg, R. J. (1985). Beyond IQ: A triarchic theory of human intelligence. CUP Archive.
Sternberg, R. J. (2000). Handbook of intelligence. Cambridge University Press.
Sternberg, R. J. (2005). The theory of successful intelligence. Interamerican Journal of Psychology, 39, 189-202.
Sternberg, R. J., & Lubart, T. I. (1996). Investing in creativity. American Psychologist, 51(7), 677-688. https://doi.org/10.1037/0003-066X.51.7.677
Stylianou, D., & Silver, E. (2004). The role of visual representations in advanced mathematical problem solving: An examination of expert-novice similarities and differences. Mathematical Thinking and Learning, 6(4), 353-387.
Torrance, E. P. (1966). Torrance tests of creative thinking. Educational and Psychological Measurement.
Torrance, E. P. (1974). Torrance tests of creative thinking: Norms-technical manual. Ginn.
Treffinger, D. J. (1991). Creative productivity: Understanding its sources and nurture. Illinois Council for the Gifted Journal, 10, 6-8.
Treffinger, D. J., Young, G. C., Selby, E. C., & Shepardson, C. (2002). Assessing Creativity: A Guide for Educators. National Research Center on the Gifted and Talented.
Vale, I., Pimentel, T., & Barbosa, A. (2018). The power of seeing in problem solving and creativity: an issue under discussion. In Broadening the scope of research on mathematical problem solving (pp. 243-272). Springer, Cham.
Vygotsky, L. S. (1978). Mind in society. Harvard University Press.
Wallas, G. (1926). The art of thought. Harcourt Brace.
World Economic Forum. (2020, October 20). The Future of Jobs Report 2020. https://www.weforum.org/reports/the-future-of-jobs-report-2020/
Zazkis, R., Dubinsky, E., & Dautermann, J. (1996). Coordinating visual and analytic strategies: A study of students' understanding of the group D4. Journal for research in Mathematics Education, 27(4), 435-457.