簡易檢索 / 詳目顯示

研究生: 黃逸杉
Yi-Shan Huang
論文名稱: 應用一日重建法和分類與迴歸樹探討主觀幸福感
Apply Day Reconstruction Method and Classification and Regression Tree to Explore Subjective Well-Being
指導教授: 林正昌
Lin, Cheng-Chang
學位類別: 碩士
Master
系所名稱: 教育心理與輔導學系
Department of Educational Psychology and Counseling
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 104
中文關鍵詞: 主觀幸福感一日重建法分類與迴歸樹
英文關鍵詞: subjective well-being, Day Reconstruction Method (DRM), Classification and Regression Tree (CART)
論文種類: 學術論文
相關次數: 點閱:267下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在運用新穎的主觀幸福感(subjective well-being)調查方法一日重建法(Day Reconstruction Method, DRM)及非線性的分類與迴歸樹(Classification and Regression Tree, CART)統計方法,探究主觀幸福感的情緒面。針對100名大學生為對象,用DRM蒐集到1657個以事件為單位的情緒資料,再運用CART統計方法,分析事件的情境與情緒間的關係。
    分析資料時,DRM能得知受試者在不同情境變項下的情緒總和分數;以CART分析則能進一步提供情境變項條件組合與情緒的關係;將事件的情緒分數彙總,則可以得知受試者個人或群體的主觀幸福感分數,包含以持續時間加權的總和情緒與U指數;個人情緒可以與主觀幸福感的認知面──生活滿意度進行比較。
    研究結果顯示,從情境分類求情緒平均分數而言,大學生在從事約會/親密關係、放鬆/玩遊戲、飲食/聚餐、看電視/電影/聽音樂、逛街/購物等感情交友、吃喝玩樂方面的事情有最正向情緒;學校課業、社團活動、工作/打工等事情則有最負向的情緒。以CART分析則發現,在所有事件中,大學生的情緒與學校功課、放鬆/玩遊戲、會議/團體討論、與好朋友互動、交通/移動等情境有重大關係;此外CART將樣本分割成16個終端節點,各有不同的條件可預測情緒。彙整事件情緒資料到個人層次則發現主觀幸福感的情緒面與認知面明顯不相同,呈低度相關。
    本研究還發現CART分析DRM資料時的優點,包括能同時分析不同資料型態且數量眾多的情境變項、找到特定的情境變項組合、排序情境變項的重要性等。
    最後,這些發現在應用方面提供一些增進大學生主觀幸福感的建議。在研究方面建議可善加利用DRM的彈性拓展未來研究方向,包含改變情境變項、受試者族群、背景變項、情緒詞,並可搭配有時間資訊的記錄工具瞭解人們生活情境與情緒的關係。此外,亦可蒐集代表性良好的樣本,以CART建立預測幸福感的模式。

    The purpose of this study was to investigate the affect part of subjective well-being (SWB) through a new kind survey method called Day Reconstruction Method (DRM) with non-liner statistical analysis method Classification and Regression Tree (CART). In this study, 1657 episodes of affect data was collected from 100 undergraduate students using DRM, these data then analyzed by CART in order to further understand the relation between situation and affect of episodes.
    When analyzing DRM, one could get net affect scores from different situation variables; CART analysis provided further information of relationship of situation conditions combination and affect; if summarize episodic data, one could get individual subjective well-being scores, including duration-weighted net affect and U-index; individual affect then could be compared with cognitive part of SWB, that is, life satisfaction.
    Mean scores of affect from different situation showed that undergraduate students had the most positive affect when the episodes involved with friendship and playing, such as dating/intimacy relationship, relax/playing games, eating, watching TV/movies/listening to music, shopping; and had the most negative affect when the episodes involved with schoolwork, school clubs, working/part time jobs. CART analysis showed that for all episodic affect, schoolwork, relax/playing games, meeting/group discussion, interaction with good friends, traffic/moving have the most important relationships. CART analysis also divided samples into 16 terminal nodes, these nodes have different conditions, which can be used to predict affect score. When summarized episodic data to individual level, that is, the affect part of SWB, one could find it differs from the cognitive part of SWB. These two parts only had low correlation.
    This study also found strength of CART for DRM data analysis, including the ability of analyzing large number and different type of variables, being able to find the specific conditions combination of situation variables, sorting situation variables from importance.
    Finally, these findings suggested some ways to improve undergraduate students' subjective well-being. It's suggested that future research making use of the flexibility of DRM for different kinds of application, including change the situation variables, subject group, background variables, and affect terms, and use other recording tools with time information to gain understanding of relationship of situation and affect. On the other hand, one can establish well-being predicting model by CART with collecting samples with good representativeness.

    誌謝詞 i 中文摘要 iii 英文摘要 v 目次 vii 表次 ix 圖次 xi 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與問題 4 第三節 名詞釋義 5 第二章 文獻探討 7 第一節 主觀幸福感與情緒的測量 7 第二節 一日重建法 9 第三節 分類與迴歸樹 13 第三章 研究方法 19 第一節 研究對象 19 第二節 研究材料與變項 19 第三節 實施程序 23 第四節 資料處理與分析 23 第四章 結果與討論 25 第一節 基本描述統計 25 第二節 事件情緒的描述統計 35 第三節 事件情緒的多元迴歸分析 41 第四節 事件情緒的分類與迴歸樹分析 46 第五節 事件情緒分析方法的比較 64 第六節 個人主觀幸福感的分析 71 第五章 結論與建議 79 第一節 結論 79 第二節 建議 81 參考文獻 85 中文部分 85 英文部分 85 附錄 89 附錄一 Kahneman等人(2004)的DRM事件變項 89 附錄二 DRM問卷 91

    江羿臻(2009)。利用分類與迴歸樹探討中學生學習成就的相關因素。國立台灣師範大學教育心理與輔導學系碩士論文。
    林明穎(2009)。音樂與情緒關係定位之研究。國立台灣師範大學教育心理與輔導學系碩士論文。
    余民寧、謝進昌、林士郁、陳柏霖、曾筱婕(2011)。教師主觀幸福感模式建構與驗證之研究。測驗學刊,58(1),55–85。
    教育部(2003)。大學生時間運用調查結果摘要分析報告。台北:教育部統計處。
    陸洛(1998)。中國人幸福感之內涵、測量及相關因素探討。國家科學委員會研究彙刊:人文及社會科學,8(1),115–137。
    曾文志(2007a)。大學生對美好生活的常識概念與主觀幸福感之研究。教育心理學報,38(4),417–441。
    曾文志(2007b)。大學生的樂觀、社會支持與幸福感的關聯:結構方程模式取向之研究。教育與心理研究,30(4),117–146。
    歐陽幸雅(2012)。國民中學教師工作調適指數建立與效度驗證。國立台灣師範大學教育心理與輔導學系碩士論文。
    洪蘭譯(2012)。快思慢想。台北:遠流。Kahneman, D. (2011). Thinking fast and slow, New York, NY: Farrar, Straus and Giroux.
    Belli, R. F. (1998). The structure of autobiographical memory and the event history calendar: potential improvements in the quality of retrospective reports in surveys. Memory, 6(4), 383–406.
    Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Belmont, CA: Wadsworth.
    Crawford, J. R., & Henry, J. D. (2004), The Positive and Negative Affect Schedule (PANAS): Construct validity, measurement properties and normative data in a large non-clinical sample. British Journal of Clinical Psychology, 43, 245–265.
    Csikszentmihalyi, M. (1990). Flow: The Psychology of Optimal Experience. New York, NY: Harper and Row.
    Diener, E. (2000). Subjective well-being: The science of happiness and proposal for a national index. American Psychologist, 55(1), 34–43.
    Diener, E., Emmons, R. A., Larsen, R. J., & Griffin, S. (1985). The Satisfaction with Life Scale. Journal of Personality Assessment, 49, 71–75.
    Diener, E., Smith, H., & Fujita, F. (1995). The personality structure of affect. Journal of Personality and Social Psychology, 69(1), 130–141.
    Easterlin, R. A. (1974). Does economic growth improve the Human Lot? In P. A. David, & M. W. Reder(Eds.), Nations and households in economic growth: Essays in Honour of Moses Abramovitz, New York, NY: Academic Press, Inc.
    Juster, F. T. & Stafford, F. P. (1985). Time, goods and well-being. Ann Arbor, MI: University of Michigan.
    Kahneman, D. (2010). Daniel Kahneman: The riddle of experience vs. memory [Video file]. Retrived from http://www.ted.com/talks/daniel_kahneman_the_riddle_of_experience_vs_memory.html
    Kahneman, D., & Krueger, A. B. (2006). Developments in the measurement of subjective well-being. Journal of Economic Perspectives, 20(1), 3–24.
    Kahneman, D., Krueger, A. B., Schkade, D. A., Schwarz, N., & Stone, A. A. (2004). A survey method for characterizing daily life Experience: The Day Reconstruction Method. Science, 306(5702), 1776–1780.
    Kass, G. V. (1980). An exploratory technique for investigating large quantities of categorical data. Applied Statistics, 29(2), 119–127.
    Krueger A. B., & Schkade, D. A. (2008). The reliability of subjective well-being measures. Journal of Public Economics, 92, 1833–1845.
    Pavot, W., & Diener, E. (1993). Review of the Satisfaction with Life Scale. Psychological Assessment, 5, 164–172.
    Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann Publishers.
    Robinson, J. P., & Godbey, G. (1997). Time for life: The surprising ways American use their time. University Park, PA: The Pennsylvania State University Press.
    Robinson, M. D., & Clore, G. L. (2002). Belief and feeling: Evidence for an accessibility model of emotional self-reports. Psychological Bulletin, 128, 934–960.
    Seligman M. E. P., & Csikszentmihalyi, M. (2000). Postive psychology: An introduction. American Psychologist, 55(1), 5–14.
    Stone, A. A., Schwartz, J. E., Schwartz, N., Schkade, D., Krueger, A., & Kahneman, D. (2006). A population approach to the study of emotion: diurnal rhythms of a working day examined with the Day Reconstruction Method. Emotion, 6(1), 139–149.
    Stone, A. A., Shiffman, S. S., & DeVries, M. W. (1999). Ecological momentary assessment. In D. Kahneman, E. Diener, & N. Schwarz (Eds), Well-being: The foundations of hedonic psychology (pp. 26–39). New York, NY: Russell Sage Foundation.
    Schwarz, N., & Oyserman, D. (2001). Asking questions about behavior: Cognition, communication and questionnaire construction. American Journal of Evaluation, 22, 127–160.
    Schwarz, N., & Sudman, S. (Eds.)(1997). Autobiographical memory and the validity of retrospective reports. New York, NY: Springer Verlag.
    Watson, D., Clark, L. A., & Tellegen, A. (1988b). Development and validation of brief measures of positive and negative affect: The PANAS Scales. Journal of Personality and Social Psychology, 47, 1063–1070.
    Waston, D., Tellegen, A. (1985). Toward a consensual structure of mood. Psychological Bulletin, 98(2), 219–235.

    下載圖示
    QR CODE