研究生: |
施廷翰 |
---|---|
論文名稱: |
斑馬魚仔魚體表排氨功能與機制之研究 |
指導教授: | 林豊益 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 44 |
中文關鍵詞: | 斑馬魚 、氨 、氫離子幫浦 、離子細胞 、Rhesus 醣蛋白 |
英文關鍵詞: | zebrafish, ammonia, H+-ATPase, ionocyte, Rhesus glycoprotein |
論文種類: | 學術論文 |
相關次數: | 點閱:268 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
淡水魚類移除體內含氮廢物最佳的方式,是直接將廢物以氨(ammonia,即NH3與NH4+)的形式排放到水體。具研究顯示,80%以上的氨會經由鰓排出。然而目前針對魚類鰓表皮細胞所作的研究仍未足以提供直接的證據說明排氨的運行方式。本實驗選用斑馬魚仔魚為模式動物,透過其體表的離子調節功能探討淡水魚類的排氨機制。
在本實驗中,利用掃描式離子選擇性電極技術(Scanning Ion-selective Electrode Technique, SIET)對仔魚體表離子作檢測。實驗發現在富含氫幫浦細胞( HRC)上的排氨的程度高於周遭的平舖細胞(PVC)與其它類型的離子細胞(Ionocyte)。以往的研究推論氫離子(H+)與排氨之間有密切的關係。在本實驗中,針對氫幫浦而使用的抑制劑bafilomycin A1與gene knockdown技術,會同時造成魚類H+與NH4+的梯度顯著降低。當給予水體高量緩衝溶液(5 mM 3-morpholinopropane sulfonic acid, MOPS)時,也發現H+與NH4+ 的排出量顯著下降。本實驗亦以SIET分析Rhcg1的功能,發現rhcg1 knockdown的仔魚其體表以及細胞排氨量明顯降低。綜合以上結果,本實驗證實仔魚體表細胞透過酸捕捉機制進行排氨功能,也為氫幫浦及Rhcg1提供參與排氨機制的直接證據。
The most effective route for fishes to deal with toxic nitrogenous wastes is to excrete NH3/NH4+ into water directly. Over 80% of total ammonia in fish body is excreted into water via the gill epithelium. However, the mechanism for branchial ammonia transport of freshwater fish is not well understood. Using zebrafish larvae as a model, the present study investigated the mechanism of ammonia secretion by the skin of the larvae. Scanning ion-selective electrode technique (SIET) was applied to detect the NH4+ and H+ fluxes at specific cells of larval skin. NH4+ extrusion was relatively high in H+ pump-rich cells (HRCs), which were identified as the H+-secreting ionocyte in zebrafish. Minor NH4+ extrusion was also detected in keratinocytes and other types of ionocytes in larval skin. NH4+ secretion from the skin was tightly linked to acid secretion. Increases in the external pH and buffer concentration (5 mM MOPS, 3-morpholinopropane sulfonic acid) diminished H+ and NH4+ gradients at the larval surface. Moreover, coupled decreases in NH4+ and H+ extrusion were found in larvae treated with an H+-pump inhibitor (bafilomycin A1) or H+-pump gene (atp6v1a) knockdown. Knockdown of Rhcg1 (drrhcg1) also decreased NH4+ secretion at larval skin and HRCs. This study demonstrates ammonia secretion in epithelial cells of larval skin through an acid-trapping mechanism, and provides direct evidence for the involvement of the H+ pump and an Rh glycoprotein (Rhcg1) in ammonia secretion.
Allert N, Koller H, Siebler M. 1998. Ammonia-induced depolarization of cultured rat cortical astrocytes. Brain Res 782:261-270.
Avella M, Bornancin M. 1989. Anew analysis of ammonia and sodium transport through the gills of fresh water rainbow trout (Salmo gairdneri). J Exp Biol 142:155-175.
Breton S, Smith PJ, Lui B, Brown D. 1996. Acidification of the male reproductive tract by a proton pumping (H+)-ATPase. Nat Med 2:470-472.
Cameron JN, Heisler N. 1983. Studies of ammonia in the trout: physiochemical parameters, acid-base behavior and respiratory clearance. J Exp Biol 105:107-125.
Claiborne JB, Edwards SL, and Morrison-Shetlar AI. 2002. Acid-base regulation in fishes: cellular and molecular mechanisms. J Exp Zool 293: 302-319.
Cooper AJ, Plum F. 1987. Biochemistry and physiology of brain ammonia. Physiol Rev 67:440-519.
Donini A, O'Donnell MJ. 2005. Analysis of Na+, Cl-, K+, H+ and NH4+ concentration gradients adjacent to the surface of anal papillae of the mosquito Aedes aegypti: application of self-referencing ion-selective microelectrodes. J Exp Biol 208:603-610.
Edwards SL, Tse CM, Toop T. 1999. Immunolocalisation of NHE3-like immunoreactivity in the gills of the rainbow trout (Oncorhynchus mykiss) and the blue-throated wrasse (Pseudolabrus tetrious). J Anat 195:465-469.
Evans DH, Cameron JN. 1986. Gill ammonia transport. J Exp Zool 239:17-23.
Evans DH, Piermarini PM, Choe KP. 2005. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85:97-177.
Faszewski EE, Kunkel JG. 2001. Covariance of ion flux measurements allows new interpretation of Xenopus laevis oocyte physiology. J Exp Zool 290:652-661.
Felipo V, Butterworth RF. 2002. Neurobiology of ammonia. Prog Neurobiol 67:259-279.
Henriksen GH, Bloom AJ, Spanswick RM. 1990. Measurement of Net Fluxes of Ammonium and Nitrate at the Surface of Barley Roots Using Ion-Selective Microelectrodes. Plant Physiol 93:271-280.
Hirata T, Kaneko T, Ono T, Nakazato T, Furukawa N, Hasegawa S, Wakabayashi S, Shigekawa M, Chang MH, Romero MF, Hirose S. 2003. Mechanism of acid adaptation of a fish living in a pH 3.5 lake. Am J Physiol Regul Integr Comp Physiol 284:R1199-1212.
Horng JL, Lin LY, Huang CJ, Katoh F, Kaneko T, Hwang PP. 2007. Knockdown of V-ATPase subunit A (atp6v1a) impairs acid secretion and ion balance in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 292:R2068-2076.
Huang CH, Liu PZ. 2001. New insights into the Rh superfamily of genes and proteins in erythroid cells and nonerythroid tissues. Blood Cells Mol Dis 27:90-101.
Hung CY, Tsui KN, Wilson JM, Nawata CM, Wood CM, Wright PA. 2007. Rhesus glycoprotein gene expression in the mangrove killifish Kryptolebias marmoratus exposed to elevated environmental ammonia levels and air. J Exp Biol 210:2419-2429.
Hwang PP, Lee TH. 2007. New insights into fish ion regulation and mitochondrion-rich cells. Comp Biochem Physiol A Mol Integr Physiol 148:479-497.
Javelle A, Lupo D, Ripoche P, Fulford T, Merrick M, Winkler FK. 2008. Substrate binding, deprotonation, and selectivity at the periplasmic entrance of the Escherichia coli ammonia channel AmtB. Proc Natl Acad Sci U S A 105:5040-5045.
Karnaky KJ, Jr., Kinter LB, Kinter WB, Stirling CE. 1976. Teleost chloride cell. II. Autoradiographic localization of gill Na,K-ATPase in killifish Fundulus heteroclitus adapted to low and high salinity environments. J Cell Biol 70:157-177.
Land SC, Sanger RH, Smith PJ. 1997. O2 availability modulates transmembrane Ca2+ flux via second-messenger pathways in anoxia-tolerant hepatocytes. J Appl Physiol 82:776-783.
Lin LY, Horng JL, Kunkel JG, Hwang PP. 2006. Proton pump-rich cell secretes acid in skin of zebrafish larvae. Am J Physiol Cell Physiol 290:C371-378.
Marini AM, Soussi-Boudekou S, Vissers S, Andre B. 1997. A family of ammonium transporters in Saccharomyces cerevisiae. Mol Cell Biol 17:4282-4293.
Marshall WS, Lynch EM, Cozzi RR. 2002. Redistribution of immunofluorescence of CFTR anion channel and NKCC cotransporter in chloride cells during adaptation of the killifish Fundulus heteroclitus to sea water. J Exp Biol 205:1265-1273.
McDonald DG, Prior ET. 1988. Branchial mechanisms of ion and acid-base regulation in the fresh water rainbow trout, Salmo gairdneri. Can J Zool 66:2699-2708.
McDonald DG, Wood CM. 1981. Branchial and renal acid and ion fluxes in the rainbow trout, Salmo gairdneri, at low environmental pH. J Exp Biol 93:101-118.
Nakada T, Hoshijima K, Esaki M, Nagayoshi S, Kawakami K, Hirose S. 2007a. Localization of ammonia transporter Rhcg1 in mitochondrion-rich cells of yolk sac, gill, and kidney of zebrafish and its ionic strength-dependent expression. Am J Physiol Regul Integr Comp Physiol 293:R1743-1753.
Nakada T, Westhoff CM, Kato A, Hirose S. 2007b. Ammonia secretion from fish gill depends on a set of Rh glycoproteins. FASEB J 21:1067-1074.
Nawata CM, Hung CC, Tsui TK, Wilson JM, Wright PA, Wood CM. 2007. Ammonia excretion in rainbow trout (Oncorhynchus mykiss): evidence for Rh glycoprotein and H+-ATPase involvement. Physiol Genomics 31:463-474.
Ninnemann O, Jauniaux JC, Frommer WB. 1994. Identification of a high affinity NH4+ transporter from plants. EMBO J 13:3464-3471.
Randall DJ, Wilson JM, Peng KW, Kok TW, Kuah SS, Chew SF, Lam TJ, Ip YK. 1999. The mudskipper, Periophthalmodon schlosseri, actively transports NH4+ against a concentration gradient. Am J Physiol 277:R1562-1567.
Salama A, Morgan IJ, Wood CM. 1999. The linkage between Na+ uptake and ammonia excretion in rainbow trout: kinetic analysis, the effects of (NH4)2SO4 and NH4HCO3 infusion and the influence of gill boundary layer pH. J Exp Biol 202:697-709.
Shirihai O, Smith P, Hammar K, Dagan D. 1998. Microglia generate external proton and potassium ion gradients utilizing a member of the H+/K+ ATPase family. Glia 23:339-348.
Smith PJ, Sanger RH, Jaffe LF. 1994. The vibrating Ca2+ electrode: a new technique for detecting plasma membrane regions of Ca2+ influx and efflux. Methods Cell Biol 40:115-134.
Smith PJ, Trimarchi J. 2001. Noninvasive measurement of hydrogen and potassium ion flux from single cells and epithelial structures. Am J Physiol Cell Physiol 280:C1-11.
Walsh PJ. 1998. Nitrogen excretion and metabolism. In: Evans DH, editor. The physiology of fishes. Boca Raton: CRC Press. p 199-214.
Weiner ID. 2006. Expression of the non-erythroid Rh glycoproteins in mammalian tissues. Transfus Clin Biol 13:159-163.
Weiner ID, Hamm LL. 2007. Molecular mechanisms of renal ammonia transport. Annu Rev Physiol 69:317-340.
Westhoff CM, Siegel DL, Burd CG, Foskett JK. 2004. Mechanism of genetic complementation of ammonium transport in yeast by human erythrocyte Rh-associated glycoprotein. J Biol Chem 279:17443-17448.
Wilkie MP. 2002. Ammonia excretion and urea handling by fish gills: present understanding and future research challenges. J Exp Zool 293:284-301.
Wilson JM, Laurent P, Tufts BL, Benos DJ, Donowitz M, Vogl AW, Randall DJ. 2000a. NaCl uptake by the branchial epithelium in freshwater teleost fish: an immunological approach to ion-transport protein localization. J Exp Biol 203:2279-2296.
Wilson JM, Randall DJ, Donowitz M, Vogl AW, Ip AK. 2000b. Immunolocalization of ion-transport proteins to branchial epithelium mitochondria-rich cells in the mudskipper (Periophthalmodon schlosseri). J Exp Biol 203:2297-2310.
Wilson RW, Wright PM, Munger RS, Wood CM. 1994. Ammonia excretion in fresh water rainbow trout (Oncorhynchus mykiss) and the importance of gill boundary layer acidification: lack of evidence for Na+/NH4+ exchange. J Exp Biol 191:37-58.
Winkler FK. 2006. Amt/MEP/Rh proteins conduct ammonia. Pflugers Arch 451:701-707.
Wood CM. 1993. Ammonia and urea metaboism and excretion. In: Evans DH, editor. The Physiology of Fishes. Boca Raton: CRC Press. p 379-425.
Wright PA. 1993. Nitrogen excretion and enzyme pathways for ureagenesis in fresh water tilapia (Oreochromis niloticus). Physiol Zool 66:881-901.
Wright PA, Randall DJ, Perry SF. 1989. Fish gill boundary layer: a site of linkage between carbon dioxide and ammonia excretion. J Comp Physiol 158:627-635.
Yan JJ, Chou MY, Kaneko T, Hwang PP. 2007. Gene expression of Na+/ H+ exchanger in zebrafish H+-ATPase-rich cells during acclimation to low-Na+ and acidic environments. Am J Physiol Cell Physiol 293:C1814-1823.