研究生: |
沈稚強 Chih-Chiang Shen |
---|---|
論文名稱: |
二維材料石墨烯與過渡金屬雙硫屬化合物之光譜性質研究 Optical studies of two dimensional materials: graphne and transition metal dichalcogenides |
指導教授: |
劉祥麟
Liu, Hsiang-Lin |
學位類別: |
博士 Doctor |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 156 |
中文關鍵詞: | 石墨烯 、過渡金屬雙硫屬化合物 、光學性質 |
英文關鍵詞: | Graphene, Transition metal dichalcogenides, Optical properties |
論文種類: | 學術論文 |
相關次數: | 點閱:487 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們量測摻雜三聚氰胺分子的石墨烯薄膜及單層過渡金屬硫屬化合物(MoS2,MoSxSey)薄膜樣品的兆赫波吸收能譜與橢圓偏光光譜,探究這些樣品的電荷傳輸行為與電子結構。我們使用化學氣相沉積法(CVD)與電化學剝離法(ECE)製作摻雜三聚氰胺分子的石墨烯薄膜樣品,並以化學氣相沉積法製作單層過渡金屬硫屬化合物薄膜樣品。
我們發現摻雜後的石墨烯薄膜樣品,在頻率位置155 cm-1有一個吸收峰,此應與摻雜了三聚氰胺分子後所造成的晶格結構無序性有關。此外,居德電漿頻率(摻雜後的石墨烯薄膜與單層二硫化鉬薄膜分別為21和7 THz) 隨著溫度降低而下降,載子的鬆弛時間(13和26 fs)並不隨著溫度改變有顯著的變化。這些結果顯示摻雜後的石墨烯薄膜與單層二硫化鉬薄膜樣品具有半導體的特性。
此外,以電化學剝離法製作的石墨烯薄膜樣品,其居德電漿頻率大於使用化學氣相沉積法製作的樣品。相反的,以電化學剝離法製作的石墨烯薄膜樣品,其載子的鬆弛時間(10 fs)短於使用化學氣相沉積法製作的樣品(84 fs)。有趣的是,單層MoSxSey薄膜樣品的居德頻率由6.5到8 THz,載子鬆弛時間從19到26 fs。
我們發現以化學氣相沉積法製作的石墨烯薄膜樣品,其吸收能譜在紫外光頻率波段具有一個不對稱的Fano共振吸收。這個吸收峰主要是激子在能帶間的躍遷。相較於未摻雜的樣品,摻雜後的石墨烯薄膜樣品,吸收峰的頻率位置呈現藍移的現象。以電化學剝離法製作的石墨烯薄膜樣品,其吸收能譜的波形較為對稱。我們推測此與使用不同的成長方式,改變了石墨烯薄膜樣品的電荷分佈有關。此外,單層MoSxSey薄膜樣品具有直接能隙(二硫化鉬和二硒化鉬分別為1.95 和 1.62 eV)。二硫化鉬和二硒化鉬的激子束縛能分別為0.28和0.24 eV。
We present the results of THz absorption and spectroscopic ellipsometric measurements of triazine-doped graphene and monolayer transition metal dichalcogenides (MoS2 and MoSxSey). The triazine-doped graphene thin films were deposited on oxidized silicon substrate (SiO2/Si), using either chemical vapor deposition (CVD) or electrochemical exfoliation (ECE). Monolayer MoS2 and MoSxSey thin films were deposited onto sapphire substrates by CVD. Our aim is to investigate the charge dynamics and electronics structures of these novel materials.
THz conductivity of all samples displays a coherent response of itinerant charge carriers at zero frequency. Notably, the CVD-grown graphene thin films with doping show an additional finite frequency peak at about 155 cm-1. A finite-frequency peak, which coexists with a Drude contribution, is likely associated with the significant disorder induced by triazine doping. Furthermore, as the temperature is lowered, the Drude plasma frequency (~ 21 and 7 THz for CVD-grown graphene with doping and MoS2 thin films) decreases, whereas the carrier relaxation time (~ 13 and 26 fs) does not show much temperature variation. These results suggest the semiconducting behavior of the CVD-grown graphene with doping and monolayer MoS2 thin films.
Additionally, the Drude plasma frequency of the ECE-grown graphene thin films is three times larger than that of CVD-grown ones. In contrast, the carrier relaxation time of the ECE-grown graphene thin films (~ 10 fs) is shorter than that of the CVD-grown samples (~ 84 fs). Interestingly, the Drude plasma frequency of monolayer MoSxSey thin films is in the range from 6.5 to 8 THz. Carrier relaxation time is in the range from 19 to 26 fs.
The optical properties of all samples were also determined by spectroscopic ellipsometry. The absorption spectrum of the CVD-grown graphene thin films exhibits an asymmetric Fano resonance in the ultraviolet frequency region. This excitonic-dominated charge transfer band in the triazine-doped graphene thin films shows a blueshift in comparison with that of undoped analog. The line shape of the ECE-grown graphene thin films displays less asymmetric. Such behavior could be attributed to the changes of the charge distributions in the graphene thin films prepared by different growth methods. Additionally, monolayer MoSxSey films show a direct gap (~ 1.95 eV for MoS2 and ~ 1.62 eV for MoSe2). The ground-state exciton binding energy is found to be about 0.28 eV for MoS2 and 0.24 eV for MoSe2.
These findings bring additional understanding of two-dimensional materials with respect to their charge dynamics and electronic structures and provide the foundation for future technological applications of these materials.
[1] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals”, Proc. Natl Acad. Sci. USA 102, 10451(2005).
[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films”, Science 306, 666 (2004).
[3] A. K. Geim and K. S. Novoselov, “The rise of graphene”, Nat. Mater. 6, 183 (2007).
[4] A. A. Balandin , S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene”, Nano Lett. 8, 902 (2008).
[5] A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature”, Nano Lett. 11, 2396 (2011).
[6] C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene”, Science 18, 385 (2008).
[7] M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors”, Nano Lett. 8, 3498 (2008).
[8] A. K. Geim, “Graphene: status and prospects”, Science 324, 1530 (2009).
[9] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, and A. C. Ferrari, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor”, Nat. Nanotechnol. 3, 210 (2008).
[10] K. Novoselov, “Graphene: mind the gap”, Nat. Mater. 6, 720 (2007).
[11] S. Y. Zhou, G. H. Gweon, A. V. Fedorov, P. N. First, W. A. Heer, D. H. Lee, F. Guinea, A. H. Castro Neto, and A. Lanzara, “Substrate-induced bandgap opening in epitaxial graphene”, Nat. Mater. 6, 770 (2007).
[12] L. Brey, and H. A. Fertig, “Electronic states of graphene nanoribbons studied with the Dirac equation”, Phys. Rev. B 73, 235411 (2006).
[13] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, “Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons”, Nature 458, 872 (2009).
[14] X. Li, X. Wang, Li. Zhang, S. Lee, and H. Dai, “Chemically derived, ultrasmooth graphene nanoribbon semiconductors”, Science 319, 1229 (2008).
[15] B. Trauzettel, D. V. Bulaev, D. Loss, and G. Burkard, “Spin qubits in graphene quantum dots”, Nat. Phys. 3, 192 (2007).
[16] L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, and A. K. Geim, “Chaotic Dirac billiard in graphene quantum dots”, Science 320, 356 (2008).
[17] Y. H. Lu, W. Chen, Y. P. Feng, and P. M. He, “Tuning the electronic structure of graphene by an organic molecule”, J. Phys. Chem. B 113, 2 (2009).
[18] J. Berashevich, and T. Chakraborty, “Tunable band gap and magnetic ordering by adsorption of molecules on grapheme”, Phys. Rev. B 80, 033404 (2009).
[19] X. Dong, Y. Shi, Y. Zhao, D. Chen, J. Ye, Y. Yao, F. Gao, Z. Ni, T. Yu, Shen, and Z. Shen, “Symmetry breaking of graphene monolayers by molecular decoration”, Phys. Rev. Lett. 102, 135501 (2009).
[20] H. Huang, S. Chen, X. Gao, W. Chen, and A. T. S. Wee, “Structural and electronic properties of PTCDA thin films on epitaxial graphene”, ACS Nano 3, 3431 (2009).
[21] L. F. Mattheis, “Band structures of transition-metal-dichalcogenide layer compounds”, Phys. Rev. B 8, 3719 (1973).
[22] J. A. Wilson and A. D. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties”, Adv. Phys. 18, 193 (1969).
[23] M. Osada and T. Sasaki, “Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks”, Adv. Phys. 24, 210 (2012).
[24] A. Ayari, E. Cobas, O. Ogundadegbe, and M. S. Fuhrer, “Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides”, J. Appl. Phys. 101, 014507 (2007).
[25] C. R. Dean, A. F. Young, I. Meric, C. Lee, L.Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics”, Nature Nanotech. 5, 722 (2010).
[26] D. Pacilé, J. C. Meyer, Ç. Ö. Girit, and A. Zettl, “The two-dimensional phase of boron nitride: Few atomic-layer sheets and suspended membranes”, Appl. Phys. Lett. 92, 133107 (2008).
[27] A. D. Yoffe, “Layer compounds”, Annu. Rev. Mater. Sci. 3, 147 (1993).
[28] A. D. Yoffe, “Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems”, Adv. Phys. 42, 173 (1993).
[29] B. K. Miremadi and S. R. Morrison, “High activity catalyst from exfoliated MoS2”, Journal of Catalysis 103, 334 (1987).
[30] M. Chhowalla and G. A. Amaratunga, “Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear”, Nature 407, 164 (2000).
[31] J. Chen, N. Kuriyama, H. Yuan, H. T. Takeshita, and T. Sakai, “Electrochemical hydrogen storage in MoS2 nanotubes”, J. Am. Chem. Soc. 123, 11813 (2001).
[32] F. Cheng and J. Chen, “Storage of hydrogen and lithium in inorganic nanotubes and nanowires”, J. Mater. Res. 21, 2744 (2006).
[33] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor”, Phys. Rev. Lett. 105, 136805 (2010).
[34] Y. Yoon, K. Ganapathi, and S. Salahuddin, “How good can monolayer MoS2 transistors be?”, Nano Lett. 11, 3768 (2011).
[35] Z. Liu, J. Yang, F. Grey, J. Z. Liu, Y. Liu, Y. Wang, Y. Yang, Y. Cheng, and Q. Zheng, “Observation of microscale superlubricity in graphite”, Phys. Rev. Lett. 108, 205503 (2012).
[36] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors”, Nature Nanotech. 6, 147 (2011).
[37] M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets”, Nature Chemistry 5, 263 (2013).
[38] Q. H. Wang, K. Z. Kourosh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides”, Nature Nanotech. 7, 699 (2012).
[39] S. Bertolazzi, J. Brivio, and A. Kis, “Stretching and breaking of ultrathin MoS2”, ACS Nano 5, 9703 (2011).
[40] A. Kuc, N. Zibouche, and T. Heine, ”Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2”, Phys. Rev. B 83, 245213 (2011).
[41] W. Zhang, J. K. Huang, C. H. Chen, Y. H. Chang, Y. J. Chen, and L. J. Li, “High-gain phototransistors based on a CVD MoS2 monolayer”, Adv. Mater. DOI: 10.1002/adma.201301244 (2013).
[42] Y. Shi, J. K. Huang, L. Jin, Y. T. Hsu, S. F. Yu, L. J. Li, and H. Y. Yang, “Selective decoration of Au nanoparticles on monolayer MoS2 single crystals”, Sci. Rep. 3, 1839 (2013).
[43] J. Lin, H. Li, H. Zhang, and W. Chen, “Plasmonic enhancement of photocurrent in MoS2 field-effect-transistor”, Appl. Phys. Lett. 102, 203109 (2013).
[44] B. Radisavljevic, M. B. Whitwick, and A. Kis, “Integrated circuits and logic operations based on single-layer MoS2”, ACS Nano 5, 9934 (2011).
[45] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2”, Nano Lett. 10, 1271 (2010).
[46] D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides”, Phys. Rev. Lett. 108, 196802 (2012).
[47] T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide”, Nature Communications 3, 887 (2012).
[48] K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity”, Nature Nanotech. 7, 494 (2012).
[49] H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping”, Nature Nanotech. 7, 490 (2012).
[50] S. Larentis, B. Fallahazad, and E. Tutuc, “Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers”, Appl. Phys. Lett. 101, 223104 (2012).
[51] M. Bernardi, M. Palummo, J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials”, Nano Lett. 13, 3664 (2013).
[52] B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics”, Nano Lett. 10, 3464 (2010).
[53] S. K. Lee, H. Y. Jang, S. Jang, E. Choi, B. H. Hong, J. Lee, S. Park, and J. H. Ahn, “All graphene-based thin film transistors on flexible plastic substrates”, Nano Lett. 12, 3472 (2012).
[54] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes”, Nature 457, 706 (2009).
[55] Y. Wang, R. Yang, Z. Shi, L. Zhang, D. Shi, E. Wang and G. Zhang, “Super-elastic graphene ripples for flexible strain sensors”, ACS Nano 5, 3645 (2011).
[56] S.-K. Lee, B. J. Kim, H. Jang, S. C. Yoon, C. Lee, B. H. Hong, J. A. Rogers, J.-H. Cho and J. H. Ahn, “Stretchable graphene transistors with printed dielectrics and gate electrodes”, Nano Lett. 11, 4642 (2011).
[57] P. W. Sutter, J. -I. Flege, and E. A. Sutter, “Epitaxial graphene on ruthenium”, Nat. Mater. 7,
406 (2008).
[58] X. Liang, Z. Fu, and S. Y. Chou, “Graphene transistors fabricated via transfer-printing in device active-areas on large wafer”, Nano Lett. 7, 3840 (2007).
[59] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene”, Science 312, 1191 (2006).
[60] C. Y. Su, A. Y. Lu, Y. Xu, F. R. Chen, A. N. Khlobystov, and L. J. Li, “High-quality thin graphene films from fast electrochemical exfoliation”, ACS Nano 5, 2332 (2011).
[61] A. Reina, X. T. Jia, J. Ho, D. Nezich, H. B. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition”, Nano Lett. 9, 30 (2009).
[62] X. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel, L. Colombo, and R. S. Ruoff, “Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper”, J. Am. Chem. Soc. 133, 2816 (2011).
[63] X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils”, Science 324, 1312 (2009).
[64] C. Mattevi, H. Kim, and M. Chhowalla, “A review of chemical vapour deposition of graphene on copper”, J. Mater. Chem. 21, 3324 (2011).
[65] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes”, Nat. Nanotechnol. 5, 574 (2010).
[66] A. Srivastava, C. Galande, L. Ci, L. Song, C. Rai, D. Jariwala, K. F. Kelly, and P. M. Ajayan, “Novel liquid precursor-based facile synthesis of large-area continuous, single, and few-layer graphene films”, Chem. Mater. 22, 3457 (2010).
[67] A. Y. Lu, S. Y. Wei, C. Y. Wu, Y. Hernandez, T. Y. Chen, T. H. Liu, C. W. Pao, F. R. Chen, L. J. Li, and Z. Y. Juang, “Decoupling of CVD graphene by controlled oxidation of recrystallized Cu”, RSC Adv. 2, 3008 (2012).
[68] E. R. Hugo, J. Prasoon, K. G. Awnish, R. G. Humberto, W. C. Milton, A. T. Srinivas, and C. E. Peter, “Adsorption of ammonia on graphene”, Nanotechnology 20, 245501 (2009).
[69] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene”, Nature Mater. 6, 652 (2007).
[70] H. Wang, T. Maiyalagan, and X. Wang, “Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications”, ACS Catal. 2, 781 (2012).
[71] L. Jia, D. H. Wang, Y. X. Huang, A. W. Xu, and H. Q. Yu, “Highly durable n-doped graphene/CdS nanocomposites with enhanced photocatalytic hydrogen evolution from water under visible light irradiation”, J. Phys. Chem. C 115, 11466 (2011).
[72] C. F. Hu, Y. L. Liu, Y. H. Yang, J. H. Cui, Z. Huang, Y. L. Wang, L. F. Yang, H. B. Wang, Y. Xiao, and J. H. Rong, “One-step preparation of nitrogen-doped graphene quantum dots from oxidized debris of graphene oxide”, J. Mater. Chem. B 1, 39 (2013).
[73] L. S. Panchokarla, K. S. Subrahmanyam, S. K. Saha, A. Govindaraj, H. R. Krishnamurthy, U. V. Waghmare, and C. N. R. Rao, “Synthesis, structure, and properties of boron- and nitrogen-doped graphene”, Adv. Mater. 21, 4726 (2009).
[74] C. Zhang, L. Fu, N. Liu, M. Liu, Y. Wang, and Z. Liu, “Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources”, Adv. Mater. 23, 1020 (2011).
[75] A. L. M. Reddy, A. Srivastava, S. R. Gowda, H. Gullapalli, M. Dubey, and P. M. Ajayan, “Synthesis of nitrogen-doped graphene films for lithium battery application”, ACS Nano 4, 6337 (2010).
[76] L. Qu, Y. Liu, J. B. Baek, and L. Dai, “Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells”, ACS Nano 4, 1321 (2010).
[77] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, “Synthesis of n-doped graphene by chemical vapor deposition and its electrical properties”, Nano Lett. 9, 1752 (2009).
[78] Z. Jin, J. Yao, C. Kittrell, and J. M. Tour, “Large-scale growth and characterizations of nitrogen-doped monolayer graphene Sheets”, ACS Nano 5, 4112 (2011).
[79] Z. Luo, S. Lim, Z. Tian, J. Shang, L. Lai, B. MacDonald, C. Fu, Z. Shen, T. Yu , and J. Lin, “Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property”, J. Mater. Chem. 21, 8038 (2011).
[80] G. Imamura and K. Saiki, “Synthesis of nitrogen-doped graphene on Pt(111) by chemical vapor deposition”, J. Phys. Chem. C 115, 10000 (2011).
[81] A. Y. Lu, S. Y. Wei, C. Y. Wu, Y. Hernandez, T. Y. Chen, T. H. Liu, C. W. Pao, F. R. Chen, L. J. Li, and Z. Y. Juang, “Decoupling of CVD graphene by controlled oxidation of recrystallized Cu”, RSC Adv. 2, 3008 (2012).
[82] Y. F. Lu, S. T. Lo, J. C. Lin, W. Zhanga, J. Y. Lu, F. H. Liu, C. M. Tseng, Y. H. Lee , C. T. Liang, and L. J. Li, “Nitrogen-doped graphene sheets grown by chemical vapor deposition: synthesis and influence of nitrogen impurities on carrier transport”, ACS Nano 7, 6522 (2013).
[83] T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, “Controlling the electronic structure of bilayer graphene”, Science 313, 951 (2006).
[84] S. Y. Zhou, D. A. Siegel, A. V. Fedorov, and A. Lanzara, “Metal to insulator transition in epitaxial graphene Induced by molecular doping” , Phys. Rev. Lett. 101, 086402 (2008).
[85] C. Coletti, C. Riedl, D. S. Lee, B. Krauss, L. Patthey, K. V. Klitzing, J. H. Smet, and U. Starke, “Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping” , Phys. Rev. B 81, 235401 (2010).
[86] F. Yavari, C. Kritzinger, C. Gaire, L. Song, H. Gullapalli, T. Borca-Tasciuc, P. M. Ajayan, and N. Koratkar, “Tunable bandgap in graphene by the controlled adsorption of water molecules” , Small 6, 2535 (2010).
[87] B. R. Matis, J. S. Burgess, F. A. Bulat, A. L. Friedman, B. H. Houston, and J. W. Baldwin, “Surface doping and band gap tunability in hydrogenated graphene” , ACS Nano 6, 17 (2012).
[88] W. Zhang, C. T. Lin, K. K. Liu, T. Tite, C. Y. Su, C. H. Chang, Y. H. Lee, C. W. Chu, K. H. Wei, J. L. Kuo, and L. J. Li, “Opening an electrical band gap of bilayer graphene with molecular doping” , ACS Nano 5, 7517 (2011).
[89] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers”, Phys. Rev. 97, 187401 (2006).
[90] F. Tuinstra and J. L. Koenig, “Raman spectrum of graphite”, J. Chem. Phys. 53, 1126 (1970).
[91] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, “Spatially resolved Raman spectroscopy of single- and few-layer graphene”, Nano Lett. 7, 238 (2007).
[92] A. C. Ferrari, “Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects”, Solid State Communications 143, 47 (2007).
[93] A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite”, Phys. Rev. Lett. 100, 117401 (2008).
[94] K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene”, Phys. Rev. Lett. 101, 196405 (2008).
[95] V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption”, Phys. Rev. B 81, 155413 (2010).
[96] L. Yang, J. Deslippe, C. H. Park, M. L. Cohen, and S. G. Louie, “Excitonic effects on the optical response of graphene and bilayer graphene”, Phys. Rev. Lett. 103, 186802 (2009).
[97] J. W. Weber, V. E. Calado, and M. C. M. van de Sanden, “Optical constants of graphene measured by spectroscopic ellipsometry”, Appl. Phys. Lett. 97, 091904 (2010).
[98] F. J. Nelson, V. K. Kamineni, T. Zhang, E. S. Comfort, J. U. Lee, and A. C. Diebold, “Optical properties of large-area polycrystalline chemical vapor deposited graphene by spectroscopic ellipsometry”, Appl. Phys. Lett. 97, 253110 (2010).
[99] J. Brivio, D. T. L. Alexander, and A. Kis, “Ripples and layers in ultrathin MoS2 membranes”, Nano Lett. 11, 5148 (2011).
[100] S. Bertolazzi, J. Brivio and A. Kis, “Stretching and breaking of ultrathin MoS2”, ACS Nano 5, 9703 (2011).
[101] A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agrait, and G. Rubio-Bollinger, “Elastic properties of freely suspended MoS2 nanosheets”, Adv. Mater. 24, 772 (2012).
[102] J. Pu, Y. Yomogida, K. K. Liu, L. J. Li, Y. Iwasa, and T. Takenobu, “Highly flexible MoS2 thin-film transistors with ion gel dielectrics”, Nano Lett. 12, 4013 (2012).
[103] J. Pu, Y. Zhang, Y. Wada, J. T. W. Wang, L. J. Li, Y. Iwasa, and T. Takenobu, “Fabrication of stretchable MoS2 thin-film transistors using elastic ion-gel gate dielectrics”, Appl. Phys. Lett. 103, 023505 (2013).
[104] H. S. S. Ramakrishna Matte, A. Gomathi, A K. Manna, D. J. Late, R. Datta, S. K. Pati, C. N. R. Rao, “MoS2 and WS2 analogues of graphene”, Angew. Chem. Int. Ed. 49, 4059 (2010).
[105] Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, and H. Zhang, “Single-layer semiconducting nanosheets: high-yield preparation and device fabrication”, Angew. Chem. Int. Ed. 50, 11093 (2011).
[106] G. Eda, H. Yamaguch, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2”, Nano Lett. 11, 5111 (2011).
[107] K. -G. Zhou, N. -N. Mao, H. -X. Wang, Y. Peng, and H. L. Zhang, “A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues”, Angew. Chem. Int. Ed. 50, 10839 (2011).
[108] J. V. Lauritsen, J. Kibsgaard, S. Helveg, H. Topsoe, B. S. Clausen, E. Lagsgaard, and F. Besenbacher, “Size-dependent structure of MoS2 nanocrystals”, Nature Nanotech. 2, 53 (2007).
[109] Y. Peng, Z. Meng, C. Zhong, J. Lu, W. Yu, Y. Jia, and Y. Qian, “Hydrothermal synthesis and. characterization of single-molecular layer MoS2 and MoSe2”, Chem. Lett. 30, 772 (2001).
[110] Y. Peng, Z. Meng, C. Zhong, J. Lu, W. Yu, Z. Yang, and Y. Qian, “Hydrothermal synthesis of MoS2 and its pressure-related crystallization”, J. Solide State Chem. 159, 170 (2001).
[111] C. Altavilla, M. Sarno, and P. Ciambelli, “A novel wet chemistry approach for the synthesis of hybrid 2d free-floating single or multilayer nanosheets of MS2@oleylamine (M=Mo, W)”, Chem. Mater. 23, 3879 (2011).
[112] Y. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, J. Lou, “Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate”, Small 8, 966 (2012).
[113] K. K. Liu, W. Zhang, Y. H. Lee,Y. C. Lin, M. T. Chang, C. Y. Su, C. S. Chang, H. Li, Y. Shi, H. Zhang, C. S. Lai, and L. J. Li, “Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates”, Nano Lett. 12, 1538 (2012).
[114] Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K -D. Chang, Y.-C. Yu, J. T.-W. Wang, C.-S. Chang, L.-J. Li, and T.-W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition”, Adv. Mater. 24, 2320 (2012).
[115] Y.-H. Lee, L. Yu, H. Wang, W. Fang, X. Ling, Y. Shi, C.-T. Lin, J.-K. Huang, M.-T. Chang, C.-S. Chang, M. Dresselhaus, T. Palacios, L.-J. Li, and J. Kong, “Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces”, Nano Lett. 13, 1852 (2013).
[116] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single- and few-layer MoS2”, ACS Nano 4, 2695 (2010).
[117] A. M. Sanchez, D. Sangalli, K. Hummer, A. Marini, and L. Wirtz, “Effect of spin-orbit interaction on the optical spectra of single-layer, double-layer, and bulk MoS2”, Phys. Rev. B 88, 045412 (2013).
[118] H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From bulk to monolayer MoS2: evolution of Raman Scattering”, Adv. Funct. Mater. 22, 1385 (2012).
[119] S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li, J. C. Grossman, and J. Wu, “Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors MoSe2 versus MoS2”, Nano Lett. 12, 5576 (2012).
[120] J. C. Shaw, H. Zhou, Y. Chen, N. O. Weiss, Y. Liu, Y. Huang, and X. Duan, “Chemical vapor deposition growth of monolayer MoSe2 nanosheets”, Nano Res. DOI 10.1007/s12274-014-0417-z.
[121] A. Kuc, N. Zibouche, and T. Heine, “Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2”, Phys. Rev. B 83, 245213 (2011).
[122] W. S. Yun, S. W. Han, S. C. Hong, I. G. Kim, and J. D. Lee, “Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te)”, Phys. Rev. B 85, 033305 (2012).
[123] K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2”, Nature Materials 12, 207 (2013).
[124] W. Zhang, C. T. Lin, K. K. Liu, T. Tite, C. Y. Su, C. H. Chang, Y. H. Lee, C. W. Chu, K. H. Wei, J. L. Kuo, and L. J. Li, “Opening an electrical band gap of bilayer graphene with molecular doping”, ACS Nano 5, 7517 (2011).
[125] X. Dong, W. J. Fang, D. L. Fu, Y. M. Shi, P. Chen, and L. J. Li, “Doping single-layer graphene with aromatic molecules”, Small 5, 1422 (2009).
[126] M. Balkanski, “Infrared absorption in heavily doped n-type Si”, Phys. Stat. Sol. 31, 323 (1969).
[127] H. F. Jang, G. Cripps, and T. Timusk, “Far-infrared absorption of neutron-transmutation-doped germanium”, Phys. Rev. B 41, 5152 (1989).
[128] H. K. Ng, M. Capizzi, G. A. Thomas, R. N. Bhatt, and A. C. Gossard, “Short-length-scal conductivity enhancement in a superlattice”, Phys. Rev. B 33, 7329 (1986).
[129] A. Gold, S. J. Allen, B. A. Wilson, and D. C. Tsui, “Frequency-dependent conductivity of a strongly disordered two-dimensional electron gas”, Phys. Rev. B 25, 3519 (1982).
[130] K. H. Lee, R. Menon, C. O. Yoon, and A. J. Heeger, “Reflectance of conducting polypyrrol: Observation of the metal-insulator transition driven by disorder”, Phys. Rev. B 52, 4779 (1995).
[131] Z. Q. Li, S. W. Tsai, W. J. Padilla, S. V. Dordevic, K. S. Burch, Y. J. Wang, and D. N. Basov, “Infrared probe of the anomalous magnetotransport of highly oriented pyrolytic graphite in the extreme quantum limit”, Phys. Rev. B 74, 195404 (2006).
[132] C. C. Regimol and C. S. Menon, “Effect of annealing and irradiation on tin phthalocyanine thin films”, Materials Science-Poland 25, 3 (2007).
[133] R. A. Collins, A. Krier, and A. K. Abass, “Optical properties of lead phthalocyanine (PbPc) thin films”, Thin Solid Films 229, 113 (1993).
[134] A. K. Hassan, and R. D. Gould, “The effects of exposure to oxygen and annealing on the conductivity of copper phthalocyanine thin films”, J. Phys: Condens. Matter. 1, 6679 (1989).
[135] L. Fritz, J. Schmalian, M. Müller and S. Sachdev, “Quantum critical transport in clean graphene”, Phys. Rev. B 78, 085416 (2008).
[136] D. H. Chae, T. Utikal, S. Weisenburger, H. Giessen, K. V. Klitzing, M. Lippitz, and J. Smet, “ Excitonic fano resonance in free-standing graphene”, Nano Lett. 11, 1379 (2011).
[137] K. F. Mak, J. Shan, and T. F. Heinz, “Seeing many-body effects in single- and few-layer graphene: observation of two dimensional saddle-point excitons”, Phys. Rev. Lett. 106, 046401 (2011).
[138] U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts”, Phys. Rev. 124, 1866 (1961).
[139] W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, C. T. Liang, J. H. He, M. Y. Chou, and L. J. Li, “Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures”, Scientific Reports 4, 3826 (2014).
[140] A. Molina-Sanchwz and L. Wirtz, “Phonons in single-layer and few-layer MoS2 and WS2”, Phys. Rev. B 84, 155413 (2011).
[141] J. S. Bae, I. S. Yang, J. S. Lee, T. W. Noh, T. Takeda, and R. Kanno, “Phonon dynamics of the geometrically frustrated pyrochlore Y2Ru2O7 investigated by Raman spectroscopy”, Phys. Rev. B 73, 052301 (2006).
[142] G. Lucovsky, R. M. White, J. A. Benda, and J. F. Revelli, “Infrared-reflectance spectra of layered group-IV and group-VI transition-metal dichalcogenides”, Phys. Rev. B. 7, 3859 (1973).
[143] K. Kaasbjerg, K. S. Thygesen, and K. W. Jacobsen, “Phonon-limited mobility in n-type single-layer MoS2 from first principles”, Phys. Rev. B. 85, 115317 (2012).
[144] G. L. Frey, S. Elani, M. Homyonfer, Y. Feldman, and R. Tenne, “Optical-absorption spectra of inorganic fullerenelike MS2 (M=Mo, W)”, Phys. Rev. B 57, 6666 (1998).
[145] A. R. Beal, J. C. Knights, and W. Y. Liang, “Transmission spectra of some transition metal dichalcogenides. II. Group VIA: trigonal prismatic coordination”, J. Phys. C: Solid State Phys. 5, 3540 (1972).
[146] J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky, and J. Narayan, “Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition”, J. Appl. Phys. 85, 7884 (1999).
[147] P. Y. Yu and M. Cardona: Fundamentals of semiconductors: Physics and Materials Properties (Springer, Heidelberg, 1996).
[148] L. Viña, S. Logothetidis, and M. Cardona, “Temperature dependence of the dielectric function of germanium”, Phys. Rev. B 30, 1979 (1984).
[149] S. A. Lourenc¸ I. F. L. Dias, J. L. Duarte, E. Laureto, E. A. Meneses, J. R. Leite, and I. Mazzaro “Temperature dependence of optical transitions in AlGaAs”, J. Appl. Phys. 89, 6159 (2001).
[150] G. L. Frey, R. Tenne, M. J. Matthews, M. S. Dresselhaus, and G. Dresselhaus, “Optical properties of MS2 (M = Mo, W) inorganic fullerenelike and nanotube material optical absorption and resonance Raman measurements”, J. Mater. Res. 13, 2412 (1998).
[151] Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlogl, “Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors”, Phys. Rev. B 84, 153402 (2011).
[152] A. Ramasubramaniam, “Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides”, Phys. Rev. B 86, 115409 (2012).
[153] T. Cheiwchanchamnangij and W. R. L. Lambrecht, “Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2”, Phys. Rev. B 85, 205302 (2012).
[154] H.-P. Komsa and A. V. Krasheninnikov, “Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles”, Phys. Rev. B 86, 241201 (2012).
[155] H. Peelaers and C. G. Van de Walle, “Effects of strain on band structure and effective masses in MoS2”, Phys. Rev. B 86, 241401 (2012).
[156] E. Fortin and F. Raga “Excitons in molybdenum disulphide”, Phys. Rev. B 11, 905 (1975).
[157] C. Zhang, A. Johnson, C. L. Hsu, L. J. Li, and C. K. Shih, “Direct imaging of the band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states and edge band bending” , Nano Lett. 14, 2443 (2014).
[158] D. Y. Qiu, F. H. da Jornada, and S. G. Louie, “Optical spectrum of MoS2: Many-body effects and diversity of exciton states”, Phys. Rev. Lett. 111, 216805 (2013).
[159] H. Shi, H. Pan, Y. W. Zhang, and B. I. Yakobson, “Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2”, Phys. Rev. B 87, 155304 (2013).
[160] N. Elmeshad, H. Abdelhamid, H. Hassanein, S. Abdelmola, and S. Said, “Exciton binding energy dependence of hydrostatic pressure and temperature inside a cylindrical quantum dot”, Chin. J. Phys. 47, 92 (2009).
[161] S. H. Su, Y. T. Hsu, Y. H. Chang, M. H. Chiu, C. L. Hsu, W. T. Hsu, W. H. Chang, J. H. He, and L. J. Li, “Band gap-tunable molybdenum sulfide selenide monolayer alloy”, Small (2014). DOI: 10.1002/smll.201302893
[162] Eugene Hecht : Optics (4th Edition , 2001).
[163] W. Zhang, A. K. Azad, and D. Grischkowsky, “Terahertz studies of carrier dynamics and dielectric response of n-type, freestanding epitaxial GaN”, Appl. Phys. Lett. 82, 2841 (2003).
[164] J. B. Baxter and C. A. Schmuttenmaer, “Carrier dynamics in bulk ZnO. I. Intrinsic conductivity measured by terahertz time-domain spectroscopy”, Phys. Rev. B 80, 235205 (2009).
[165] A. Castellanos-Gomez, N. Agraït, and G. Rubio-Bollinger, “Optical identification of atomically thin dichalcogenide crystals”, Appl. Phys. Lett. 96, 213116 (2010).
[166] T. Nakamura, H. Fujii, N. Juni and N. Tsutsumi, “Enhanced coupling of light from organic electroluminescent device using diffusive particle dispersed high refractive index resin substrate”, Opt. Rev. 13, 104 (2006).
[167] D. W. Mosley, K. Auld, D. Conner, J. Gregory, X. Q. Liu, A. Pedicini, D. Thorsen, M. Wills, G. Khanarian and E. S. Simon, “High performance encapsulants for ultra high-brightness LEDs”, Proc. SPIE 6910, 691017 (2008).
[168] K. C. Krogman, T. Druffel and M. K. Sunkara, “Anti-reflective optical coatings incorporating nanoparticles”, Nanotechnology 16, S338 (2005).